

C H A P T E R 5

5

S
ound C

om
ponents

Sound Components 5

This chapter describes sound components, which are code modules used by the
Sound Manager to manipulate audio data or to communicate with sound output
devices. Current versions of the Sound Manager allow you to write two kinds of
sound components:

■ compression and decompression components (codecs), which allow you to implement
audio data compression and decompression algorithms different from those provided
by the Sound Manager’s MACE (Macintosh Audio Compression and Expansion)
capabilities

■ sound output device components, which send audio data directly to sound output
devices

You need to read this chapter only if you are developing a sound output device or if you
want to implement a custom compression and decompression scheme for audio data.
For example, you might write a codec to handle 16-bit audio data compression and
decompression. (The MACE algorithms currently compress and expand only 8-bit data
at ratios of 3:1 and 6:1.)

IMPORTANT

Sound components are loaded and managed by the Sound Manager
and operate transparently to applications. Applications that want to
create sounds must use Sound Manager routines to do so. The routines
described in this chapter are intended for use exclusively by sound
components. ▲

To use this chapter, you should already be familiar with the general operation of the
Sound Manager, as described in the chapter “Introduction to Sound on the Macintosh”
in this book. Because sound components are components, you also need to be familiar
with the Component Manager, described in Inside Macintosh: More Macintosh Toolbox. If
you are developing a sound output device component, you need to be familiar with the
process of installing a driver and handling interrupts created by your hardware device.
See Inside Macintosh: Devices for complete information on devices and device drivers.

If you’re developing a sound output device, you might also need to write a control panel
extension that installs a custom subpanel into the Sound control panel. For example,
your subpanel could allow the user to set various characteristics of the sound your
output device is creating. For complete information on writing control panel subpanels,
see the chapter “Control Panel Extensions” in Inside Macintosh: Operating System Utilities.

This chapter begins with a general description of sound components and how they are
managed by the Sound Manager. Then it provides instructions on how to write a sound
component. The section “Sound Components Reference” beginning on page 5-22
describes the sound component selectors your component might need to handle and the
component-defined routines that your sound component should call in response to those
the sound component selectors. It also describes a small number of Sound Manager
utility routines that your sound component can use.
5-3

C H A P T E R 5

Sound Components

Note
Pascal interfaces for sound components are not currently available. As a
result, this chapter provides all source code examples and reference
materials in C. ◆

About Sound Components 5

A sound component is a component that works with the Sound Manager to manipulate
audio data or to communicate with a sound output device. Sound components provide
the foundation for the modular, device-independent sound architecture introduced with
Sound Manager version 3.0. This section provides a description of sound components
and shows how they are managed by the Sound Manager. For specific information on
creating a sound component, see “Writing a Sound Component” beginning on page 5-8.

Sound Component Chains 5
Prior to version 3.0, the Sound Manager performed all audio data processing internally,
using its own filters to decompress audio data, convert sample rates, mix separate sound
channels, and so forth. This effectively rendered it difficult, if not impossible, to add
other data modification filters to process the audio data. (The now-obsolete method of
installing a sound modifier with the SndAddModifier routine did not work reliably.)
More importantly, the Sound Manager was responsible for managing the entire stream of
audio data, from the application to the available sound-producing audio hardware. This
made it very difficult to support new sound output devices.

In versions 3.0 and later, the Sound Manager provides a new audio data processing
architecture based on components, illustrated in Figure 5-1. The fundamental idea is that
the process of playing a sound can be divided into a number of specific steps, each of
which has well-defined inputs and outputs. Figure 5-1 shows the steps involved in
playing an 11 kHz compressed sampled sound resource on a Macintosh II computer.

An application sends the compressed sound data to the Sound Manager, which
constructs an appropriate sound component chain that links the unprocessed audio
data to the sound components required to modify the data into a form that can be sent to
the current sound output device. As you can see in Figure 5-1, the Sound Manager links
together sound components that, in sequence, expand the compressed sound data into
audio samples, convert the sample rate from 11 kHz to 22 kHz, mix those samples with
samples from any other sound channels that might be playing, and then write the
samples to the available audio hardware (in this case, the FIFO buffer in the
Apple Sound Chip).

IMPORTANT

The Sound Manager itself converts both wave-table data and
square-wave data into sampled-sound data before sending the data
into a chain of sound components. As a result, sound components need
to be concerned only with sampled-sound data. ▲
5-4 About Sound Components

C H A P T E R 5

Sound Components

5

S
ound C

om
ponents

Figure 5-1 The component-based sound architecture

The components in a component chain may vary, depending both on the format of the
audio data sent to the Sound Manager by an application and on the capabilities of
the current sound output device. The chain shown in Figure 5-1 is necessary to handle
the compressed 11 kHz sound because the Apple Sound Chip can handle only 22 kHz
noncompressed sampled-sound data. Other sound output devices may be able to do
more processing internally, thereby reducing the amount of processing required by the
sound component chain. For instance, a DSP-based sound card might be capable of
converting sample rates itself. In that case, the Sound Manager would not install the rate
conversion component into the sound component chain. The resulting sound component
chain is shown in Figure 5-2.

Figure 5-2 A component chain for audio hardware that can convert sample rates

The principal function of a sound component is to transfer data from the source down
the chain of sound components while performing some specific modification on the data.
It does this by getting a block of data from its source component (the component that
immediately precedes it in the chain). The sound component then processes that data
and stores it in the component’s own private buffers. The next component can then get
that processed data, perform its own modifications, and pass the data to the next
component in the chain. Eventually, the audio data flows through the Apple Mixer
(described in the next section) to the sound output device component, which sends the
data to the current sound output device.

Audio

hardware

Sound

Manager

Source Expansion

component

Apple

Mixer

Output device

component

(ASC driver)

Application

Rate

conversion

component

11 kHz

compressed

sound

Decompressed

audio samples

22 kHz

audio samples

22 kHz

decompressed

sound
'snd ' resource

Audio

hardware

Sound

Manager

Source
Apple

Mixer

Output device

component

(DSP driver)

Application

Expansion

component
About Sound Components 5-5

C H A P T E R 5

Sound Components

Notice that only the sound output device component communicates directly with the
sound output hardware. This insulates all other sound components from having to know
anything about the current sound output device. Rather, those components (sometimes
called utility components) can simply operate on a stream of bytes.

The Sound Manager provides sound output device components for all sound output
devices built into Macintosh computers. It also provides utility components for many
typical kinds of audio data manipulation, including

■ sample rate conversion

■ audio data expansion

■ sample size conversion

■ format conversion (for example, converting offset binary data to two’s complement)

Currently, you can write sound output device components to handle communication
with your own sound output devices. You can also write utility components to handle
custom compression and expansion schemes. You cannot currently write any other kind
of utility component.

The Apple Mixer 5
As you’ve seen, most sound components take a single source of audio data and modify
it in some way, thereby producing a single output stream of audio data. There is one
special sound component, known as the Apple Mixer component (or, more briefly, the
Apple Mixer), that is able to handle more than one input data stream. Its function is
precisely to mix together all open channels of sound data into a single output stream,
as shown in Figure 5-3.

Figure 5-3 Mixing multiple channels of sound

Audio

hardware

Sound

Manager

Source

Source

Source

Expansion

component

Expansion

component

Apple

Mixer

Output device

component

(ASC driver)

Application 1

Application 2

Rate

conversion

component

Rate

conversion

component
5-6 About Sound Components

C H A P T E R 5

Sound Components

5

S
ound C

om
ponents

The Apple Mixer has a more general function also, namely to construct the sound
component chain required to process audio data from a given sound source into a format
that can be handled by a particular sound output device. The Apple Mixer always feeds
its output directly to the sound output device component, which sends the data to its
associated audio hardware. After creating the component chain, the Apple Mixer assigns
it a source ID, a 4-byte token that provides a unique reference to the component chain.
The Apple Mixer is actually created by the sound output device component, when that
component calls the Sound Manager’s OpenMixerSoundComponent function.

In addition to creating sound component chains and mixing their data, the Apple Mixer
can control the volume and stereo panning of a particular sound channel. Some sound
output devices might be able to provide these capabilities as well. Indeed, some sound
output devices might even be able to mix the data in multiple sound channels. In those
cases, the sound output device component can call the OpenMixerSoundComponent
function once for each sound source it wants to manage. The result is a separate instance
of the Apple Mixer for each sound source, as shown in Figure 5-4.

Figure 5-4 A sound output device component that can mix sound channels

The sound output device component can instruct each instance of the Apple Mixer to
pass all the sound data through unprocessed, thereby allowing the output device to
perform the necessary processing and mixing. In this case, the Apple Mixer consumes
virtually no processing time. The Apple Mixer must, however, still be present to set up
the sound component chain and to assign a source ID to each sound source.

The Data Stream 5
A sound component is a standalone code resource that performs some signal processing
function or communicates with a sound output device. All sound components have a
standard programming interface and local storage that allows them to be connected

Audio

hardware

Sound

Manager

Source

Source

Source

Application 1

Application 2

Apple

Mixer

Output device

component

(DSP driver)

Apple

Mixer

Apple

Mixer

Rate

conversion

component
About Sound Components 5-7

C H A P T E R 5

Sound Components

together in series to perform a wide range of audio data processing tasks. As previously
indicated, all sound components (except for mixer components and some sound output
device components) accept a single stream of input data and produce a single stream of
output data.

The Sound Manager sends your sound component information about its input stream by
passing it the address of a sound component data record, defined by the
SoundComponentData data type.

typedef struct {

long flags; /*sound component flags*/

OSType format; /*data format*/

short numChannels; /*number of channels in data*/

short sampleSize; /*size of a sample*/

UnsignedFixed sampleRate; /*sample rate*/

long sampleCount; /*number of samples in buffer*/

Byte *buffer; /*location of data*/

long reserved; /*reserved*/

} SoundComponentData, *SoundComponentDataPtr;

The buffer field points to the buffer of input data. The other fields define the format of
that data. For example, the sample size and rate are passed in the sampleSize and
sampleRate fields, respectively. A utility component should modify the data in that
buffer and then write the processed data into an internal buffer. Then it should fill out
a sound component data record and pass its address back to the Sound Manager, which
will then pass it on to the next sound component in the chain. Eventually, the audio data
passes through all utility components in the chain, through the Apple Mixer and the
sound output device component, down to the audio hardware.

Writing a Sound Component 5

A sound component is a component that works with the Sound Manager to manipulate
audio data or to communicate with a sound output device. Because a sound component
is a component, it must be able to respond to standard selectors sent by the Component
Manager. In addition, a sound component must handle other selectors specific to sound
components. This section describes how to write a sound component.

Creating a Sound Component 5
A sound component is a component. It contains a number of resources, including icons,
strings, and the standard component resource (a resource of type 'thng') required of
any Component Manager component. In addition, a sound component must contain
code to handle required selectors passed to it by the Component Manager as well as
selectors specific to the sound component.
5-8 Writing a Sound Component

C H A P T E R 5

Sound Components

5

S
ound C

om
ponents

Note
For complete details on components and their structure, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. This
section provides specific information about sound components. ◆

The component resource binds together all the relevant resources contained in a
component; its structure is defined by the ComponentResource data type.

struct ComponentResource {

ComponentDescription cd;

ResourceSpec component;

ResourceSpec componentName

ResourceSpec componentInfo;

ResourceSpec componentIcon;

};

The component field specifies the resource type and resource ID of the component’s
executable code. By convention, this field should be set to the value
kSoundComponentCodeType:

#define kSoundComponentCodeType 'sift' /*sound component code type*/

(You can, however, specify some other resource type if you wish.) The resource ID can be
any integer greater than or equal to 128. See the following section for further information
about this code resource. The ResourceSpec data type has this structure:

typedef struct {

OSType resType;

short resID;

} ResourceSpec;

The componentName field specifies the resource type and resource ID of the resource
that contains the component’s name. Usually the name is contained in a resource of type
'STR '. This string should be as short as possible.

The componentInfo field specifies the resource type and resource ID of the resource
that contains a description of the component. Usually the description is contained in a
resource of type 'STR '.

The componentIcon field specifies the resource type and resource ID of the resource
that contains an icon for the component. Usually the icon is contained in a resource of
type 'ICON'.

The cd field of the ComponentResource structure is a component description record,
which contains additional information about the component. A component description
record is defined by the ComponentDescription data type.

typedef struct {

OSType componentType;

OSType componentSubType;
Writing a Sound Component 5-9

C H A P T E R 5

Sound Components

OSType componentManufacturer;

unsigned long componentFlags;

unsigned long componentFlagsMask;

} ComponentDescription;

For sound components, the componentType field must be set to a value recognized
by the Sound Manager. Currently, there are five available component types for
sound components:

#define kSoundComponentType 'sift' /*utility component*/

#define kMixerType 'mixr' /*mixer component*/

#define kSoundHardwareType 'sdev' /*sound output device component*/

#define kSoundCompressor 'scom' /*compression component*/

#define kSoundDecompressor 'sdec' /*decompression component*/

In addition, the componentSubType field must be set to a value that indicates the type
of audio services your component provides. For example, the Apple-supplied sound
output device components have these subtypes:

#define kClassicSubType 'clas' /*Classic hardware*/

#define kASCSubType 'asc ' /*ASC device*/

#define kDSPSubType 'dsp ' /*DSP device*/

If you add your own sound output device component, you should define some other
subtype.

Note
Apple Computer, Inc., reserves for its own use all types and subtypes
composed solely of lowercase letters. ◆

You can assign any value you like to the componentManufacturer field; typically you
put the signature of your sound component in this field.

The componentFlags field of the component description for a sound component
contains bit flags that encode information about the component. You can use this field
to specify that the Component Manager should send your component the
kComponentRegisterSelect selector.

enum {

cmpWantsRegisterMessage = 1L<<31 /*send register request*/

};

This bit is most useful for sound output device components, which might need to test for
the presence of the appropriate hardware to determine whether to register with the
Component Manager. When your component gets the kComponentRegisterSelect
selector at system startup time, it should make sure that all the necessary hardware is
available. If it isn’t available, your component shouldn’t register. See “Registering and
Opening a Sound Component” beginning on page 5-16 for more information on opening
and registering your sound component.
5-10 Writing a Sound Component

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
You also use the componentFlags field of the component description to define the
characteristics of your component. For example, you can set a bit in that field to indicate
that your sound component can accept stereo sound data. See “Specifying Sound
Component Capabilities” on page 5-11 for more details on specifying the features of your
sound component.

You should set the componentFlagsMask field to 0.

Listing 5-1 shows, in Rez format, a component resource for a sample sound output
device component named SurfBoard.

Listing 5-1 Rez input for a component resource

#define kSurfBoardID 128

#define kSurfBoardSubType 'SURF'

resource 'thng' (kSurfBoardID, purgeable) {

'sdev', /*component type*/

kSurfBoardSubType, /*component subtype*/

'appl', /*component manufacturer*/

cmpWantsRegisterMessage, /*component flags*/

0, /*component flags mask*/

'sift', /*component code resource type*/

kSurfBoardID, /*component code resource ID*/

'STR ', /*component name resource type*/

kSurfBoardID, /*component name resource ID*/

'STR ', /*component info resource type*/

kSurfBoardID+1, /*component info resource ID*/

'ICON', /*component icon resource type*/

kSurfBoardID /*component icon resource ID*/

};

Your sound component is contained in a resource file. You can assign any type you wish
to be the file creator, but the type of the file must be 'thng'. If the sound component
contains a 'BNDL' resource, then the file’s bundle bit must be set.

Specifying Sound Component Capabilities 5
As mentioned in the previous section, the componentFlags field of a component
description for a sound component contains bit flags that encode information about the
component. The high-order 8 bits of that field are reserved for use by the Component
Manager. In those 8 bits, you can set the cmpWantsRegisterMessage bit to indicate
that the Component Manger should call your component during registration.

The low-order 24 bits of the componentFlags field of a component description are
used by the Sound Manager. You’ll set some of these bits to define the capabilities of
Writing a Sound Component 5-11

C H A P T E R 5

Sound Components
your sound component. You can use the following constants to set specific bits in the
componentFlags field.

#define k8BitRawIn (1 << 0) /*data flags*/

#define k8BitTwosIn (1 << 1)

#define k16BitIn (1 << 2)

#define kStereoIn (1 << 3)

#define k8BitRawOut (1 << 8)

#define k8BitTwosOut (1 << 9)

#define k16BitOut (1 << 10)

#define kStereoOut (1 << 11)

#define kReverse (1 << 16) /*action flags*/

#define kRateConvert (1 << 17)

#define kCreateSoundSource (1 << 18)

#define kHighQuality (1 << 22) /*performance flags*/

#define kRealTime (1 << 23)

These constants define four types of information about your sound component: the kind
of audio data it can accept as input, the kind of audio data it can produce as output, the
actions it can perform on the audio data it’s passed, and the performance of your sound
component. For example, a utility component that accepts only monaural 8-bit, offset
binary data as input and converts it to 16-bit two’s complement data might have the
value 0x00000801 (that is, k8BitRawIn | k16BitOut) in the componentFlags field.

The Sound Manager also defines a number of masks that you can use to select ranges of
bits within the componentFlags field. See “Sound Component Features Flags” on
page 5-26 for complete information on the defined bit constants and masks.

Dispatching to Sound Component-Defined Routines 5
As explained earlier, the code stored in the sound component should be contained in a
resource of type kSoundComponentCodeType. The Component Manager expects the
entry point in this resource to be a function with this format:

pascal ComponentResult MySurfDispatch (ComponentParameters *params,

SoundComponentGlobalsPtr globals);

The Component Manager calls your sound component by passing MySurfDispatch a
selector in the params->what field; MySurfDispatch must interpret the selector and
possibly dispatch to some other routine in the resource. Your sound component must be
able to handle the required selectors, defined by these constants:

#define kComponentOpenSelect -1

#define kComponentCloseSelect -2

#define kComponentCanDoSelect -3

#define kComponentVersionSelect -4
5-12 Writing a Sound Component

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
#define kComponentRegisterSelect -5

#define kComponentTargetSelect -6

#define kComponentUnregisterSelect -7

Note
For complete details on required component selectors, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. ◆

In addition, your sound component must be able to respond to component-specific
selectors. Some of these selectors must be handled by your component; if your
component doesn’t implement one of these selectors, it should return the
badComponentSelector result code. Other selectors should be delegated up the
component chain. This allows the Sound Manager to query a particular component
chain by passing a selector to the first component in the chain. If your component does
not implement a delegable selector, it should call the Component Manager routine
DelegateComponentCall to delegate the selector to its source component. If your
sound component does implement a particular delegable selector, it should perform the
operation associated with it. The Sound Manager defines a constant to designate the
delegable selectors.

/*first selector that can be delegated up the chain*/

#define kDelegatedSoundComponentSelectors 0x0100

The Sound Manager can pass these selectors to your sound component:

enum {

/*the following calls cannot be delegated*/

kSoundComponentInitOutputDeviceSelect = 1,

kSoundComponentSetSourceSelect,

kSoundComponentGetSourceSelect,

kSoundComponentGetSourceDataSelect,

kSoundComponentSetOutputSelect,

/*the following calls can be delegated*/

kSoundComponentAddSourceSelect = kDelegatedSoundComponentSelectors + 1,

kSoundComponentRemoveSourceSelect,

kSoundComponentGetInfoSelect,

kSoundComponentSetInfoSelect,

kSoundComponentStartSourceSelect,

kSoundComponentStopSourceSelect,

kSoundComponentPauseSourceSelect,

kSoundComponentPlaySourceBufferSelect

};

You can respond to these selectors by calling the Component Manager routine
CallComponentFunctionWithStorage or by delegating the selector to your
component’s source component. Listing 5-2 illustrates how to define a sound component
entry point routine.
Writing a Sound Component 5-13

C H A P T E R 5

Sound Components
Listing 5-2 Handling Component Manager selectors

pascal ComponentResult MySurfDispatch (ComponentParameters *params,

 SoundComponentGlobalsPtr globals)

{

ComponentRoutine myRoutine;

ComponentResult myResult;

/*Get address of component-defined routine.*/

myRoutine = MyGetComponentRoutine(params->what);

if (myRoutine == nil) /*selector not implemented*/

myResult = badComponentSelector;

else if (myRoutine == kDelegateCall) /*selector should be delegated*/

myResult = DelegateComponentCall(params, globals->sourceComponent);

else

myResult = CallComponentFunctionWithStorage((Handle) globals, params,

(ComponentRoutine) myRoutine);

return (myResult);

}

As you can see, the MySurfDispatch function defined in Listing 5-2 simply retrieves
the address of the appropriate component-defined routine, as determined by the
params->what field. If the routine MyGetComponentRoutine returns nil, then
MySurfDispatch itself returns the badComponentSelector result code. Otherwise,
if the selector should be delegated, MySurfDispatch calls DelegateComponentCall
to do so. Finally, if the selector hasn’t yet been handled, the appropriate
component-defined routine is executed via CallComponentFunctionWithStorage.

Listing 5-3 defines the function MyGetComponentRoutine.

Listing 5-3 Finding the address of a component-defined routine

ComponentRoutine MyGetComponentRoutine (short selector)

{

void *myRoutine;

if (selector < 0)

switch (selector) /*required component selectors*/

{

case kComponentRegisterSelect:

myRoutine = MyRegisterSoundComponent;

break;

case kComponentVersionSelect:
5-14 Writing a Sound Component

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
myRoutine = MySoundComponentVersion;

break;

case kComponentCanDoSelect:

myRoutine = MySoundComponentCanDo;

break;

case kComponentCloseSelect:

myRoutine = MyCloseSoundComponent;

break;

case kComponentOpenSelect:

myRoutine = MyOpenSoundComponent;

break;

default:

myRoutine = nil; /*unknown selector, so fail*/

break;

}

else if (selector < kDelegatedSoundComponentSelectors)

/*selectors that can't be delegated*/

switch (selector)

{

case kSoundComponentInitOutputDeviceSelect:

myRoutine = MySoundComponentInitOutputDevice;

break;

case kSoundComponentSetSourceSelect:

case kSoundComponentGetSourceSelect:

case kSoundComponentGetSourceDataSelect:

case kSoundComponentSetOutputSelect:

default:

myRoutine = nil; /*unknown selector, so fail*/

break;

}

else /*selectors that can be delegated*/

switch (selector)

{

case kSoundComponentStartSourceSelect:

myRoutine = MySoundComponentStartSource;

break;

case kSoundComponentPlaySourceBufferSelect:

myRoutine = MySoundComponentPlaySourceBuffer;

break;

case kSoundComponentGetInfoSelect:

myRoutine = MySoundComponentGetInfo;

break;
Writing a Sound Component 5-15

C H A P T E R 5

Sound Components
case kSoundComponentSetInfoSelect:

myRoutine = MySoundComponentSetInfo;

break;

case kSoundComponentAddSourceSelect:

case kSoundComponentRemoveSourceSelect:

case kSoundComponentStopSourceSelect:

case kSoundComponentPauseSourceSelect:

default:

myRoutine = kDelegateCall; /*delegate it*/

break;

}

return (myRoutine);

}

In all likelihood, your component is loaded into the system heap, although it might be
loaded into an application heap if memory is low in the system heap. You can call the
Component Manager function GetComponentInstanceA5 to determine the A5 value
of the current application. If this function returns 0, your component is in the system
heap; otherwise, your component is in an application’s heap. Its location might affect
how you allocate memory. For example, calling the MoveHHi routine on handles in the
system heap has no result. Thus, you should either call the ReserveMemSys routine
before calling NewHandleSys (so that the handle is allocated as low in the system heap
as possible) or else just allocate a nonrelocatable block by calling the NewPtrSys routine.

If you need to access resources that are stored in your sound component, you can use
OpenComponentResFile and CloseComponentResFile. OpenComponentResFile
requires the ComponentInstance parameter supplied to your routine. You should not
call Resource Manager routines such as OpenResFile or CloseResFile.

▲ W A R N I N G

Do not leave any resource files open when your sound component is
closed. Their maps will be left in the subheap when the subheap is freed,
causing the Resource Manager to crash. ▲

The following sections illustrate how to define some of the sound component functions.

Registering and Opening a Sound Component 5
The Component Manager sends your component the kComponentRegisterSelect
selector, usually at system startup time, to allow your component to determine whether
it wants to register itself with the Component Manager. Utility components should
always register themselves, so that the capabilities they provide will be available when
needed. Sound output device components, however, should first check to see whether
any necessary hardware is available before registering themselves. If the hardware they
drive isn’t available, there is no point in registering with the Component Manager.
5-16 Writing a Sound Component

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
The Component Manager sends your component the kComponentOpenSelect selector
whenever the Sound Manager wants to open a connection to your component. In
general, a sound output device component has only one connection made to it. A utility
component, however, might have several instances, if the capabilities it provides are
needed by more than one sound component chain. Your component should do as little as
possible when opening up. It should allocate whatever global storage it needs to manage
the connection and call SetComponentInstanceStorage so that the Component
Manager can remember the location of that storage and pass it to all other
component-defined routines.

As noted in the previous section, your component is probably loaded into the system
heap. If so, you should also allocate any global storage in the system heap. If memory
is tight, however, your component might be loaded into an application’s heap (namely,
the heap of the first application that plays sound). In that case, you should allocate any
global variables you need in that heap. The Sound Manager ensures that other
applications will not try to play sound while the component is in this application heap.

IMPORTANT

Your component is always sent the kComponentOpenSelect
component selector before it is sent the kComponentRegisterSelect
selector. As a result, you should not attempt to initialize or configure any
associated hardware in response to kComponentOpenSelect. ▲

The Sound Manager sends the kSoundComponentInitOutputDeviceSelect
selector specifically to allow a sound output device component to perform any
hardware-related operations. Your component should initialize the hardware to some
reasonable default values, create the Apple Mixer, and allocate any other memory that
might be needed. Listing 5-4 shows one way to respond to the
kSoundComponentInitOutputDeviceSelect selector.

Listing 5-4 Initializing an output device

static pascal ComponentResult MySoundComponentInitOutputDevice

(SoundComponentGlobalsPtr globals, long actions)

{

#pragma unused (actions)

ComponentResult myResult;

/*Make sure we got our globals.*/

if (globals->hwGlobals == nil)

return (notEnoughHardwareErr);

/*Set up the hardware.*/

myResult = MySetupHardware(globals);

if (myResult != noErr)

return (myResult);
Writing a Sound Component 5-17

C H A P T E R 5

Sound Components
/*Create an Apple Mixer.*/

myResult = OpenMixerSoundComponent(&globals->thisComp, 0,

 &globals->sourceComponent);

return (myResult);

}

The MySoundComponentInitOutputDevice function defined in Listing 5-4 simply
retrieves the location of its global variables, configures the hardware by calling the
MySetupHardware function, and then calls OpenMixerSoundComponent to create an
instance of the Apple Mixer.

Finding and Changing Component Capabilities 5
All sound components take a stream of input data and produce a (usually different)
stream of output data. The Sound Manager needs to know what operations your
component can perform, so that it knows what other sound components might need to
be linked together to play a particular sound on the available sound output device. It
calls your component’s SoundComponentGetInfo and SoundComponentSetInfo
functions to get and set information about the capabilities and current settings of your
sound component.

To specify the kind of information it wants to get or set, the Sound Manager passes your
component a sound component information selector. If your component does not
support a particular selector, if should pass the selector to the specified sound source.
If your component does support the selector, it should either return the desired
information directly or alter its settings as requested.

The sound component information selectors can specify any of a large number of audio
capabilities or component settings. For example, the selector siRateMultiplier is
passed to get or set the current output sample rate multiplier value.

Note
The Sound Manager uses many of the sound input device information
selectors defined by the Sound Input Manager for communicating with
sound input devices. See “Sound Input Manager” in this book for a
description of the sound input device information selectors. A complete
list of all sound component information selectors is provided in “Sound
Component Information Selectors” beginning on page 5-22. ◆

Your component’s SoundComponentGetInfo function has the following declaration:

pascal ComponentResult SoundComponentGetInfo (ComponentInstance ti,

SoundSource sourceID, OSType selector,

void *infoPtr);

The sound component information selector is passed in the selector parameter.
The sound source is identified by the source ID passed in the sourceID parameter.
5-18 Writing a Sound Component

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
The infoPtr parameter specifies the location in memory of the information returned
by SoundComponentGetInfo. If the information to be returned occupies four bytes
or fewer, you can simply return the information in the location pointed to by that
parameter. Otherwise, you should pass back in the infoPtr parameter a pointer to a
record of type SoundInfoList, which contains an integer and a handle to an array of
data items. In the second case, you’ll need to allocate memory to hold the information
you need to pass back. Listing 5-5 defines a component’s SoundComponentGetInfo
routine. It returns information to the Sound Manager about its capabilities and
current settings.

Listing 5-5 Getting sound component information

static pascal ComponentResult MySoundComponentGetInfo

(SoundComponentGlobalsPtr globals, SoundSource sourceID,

OSType selector, void *infoPtr)

{

HandleListPtr listPtr;

short *sp, i;

UnsignedFixed *lp;

Handle h;

HardwareGlobalsPtr hwGlobals = globals->hwGlobals;

ComponentResult result = noErr;

/*Make sure we got our global variables.*/

if (hwGlobals == nil)

return (notEnoughHardwareErr);

switch (selector)

{

case siSampleSize: /*return current sample size*/

*((short *) infoPtr) = hwGlobals->sampleSize;

break;

case siSampleSizeAvailable: /*return sample sizes available*/

h = NewHandle(sizeof(short) * kSampleSizesCount);

if (h == nil)

return (MemError());

listPtr = (HandleListPtr) infoPtr;

listPtr->count = 0; /*num. sample sizes in handle*/

listPtr->handle = h; /*handle to be returned*/

sp = (short *) *h; /*store sample sizes in handle*/
Writing a Sound Component 5-19

C H A P T E R 5

Sound Components
for (i = 0; i < kSampleSizesCount; ++i)

if (hwGlobals->sampleSizesActive[i])

{

listPtr->count++;

*sp++ = hwGlobals->sampleSizes[i];

}

break;

case siSampleRate: /*return current sample rate*/

*((Fixed *) infoPtr) = hwGlobals->sampleRate;

break;

case siSampleRateAvailable: /*return sample rates available*/

h = NewHandle(sizeof(UnsignedFixed) * kSampleRatesCount);

if (h == nil)

return (MemError());

listPtr = (HandleListPtr) infoPtr;

listPtr->count = 0; /*num. sample rates in handle*/

listPtr->handle = h; /*handle to be returned*/

lp = (UnsignedFixed *) *h;

/*If the hardware can support a range of sample rate values,

 the list count should be set to 0 and the minimum and maximum

 sample rate values should be stored in the handle.*/

if (hwGlobals->supportsRateRange)

{

*lp++ = hwGlobals->sampleRateMin;

*lp++ = hwGlobals->sampleRateMax;

}

/*If the hardware supports a limited set of sample rates,

 the list count should be set to the number of sample rates

 and this list of rates should be stored in the handle.*/

else

{

for (i = 0; i < kSampleRatesCount; ++i)

if (hwGlobals->sampleRatesActive[i])

{

listPtr->count++;

*lp++ = hwGlobals->sampleRates[i];
5-20 Writing a Sound Component

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
}

}

break;

case siNumberChannels: /*return current num. channels*/

*((short *) infoPtr) = hwGlobals->numChannels;

break;

case siChannelAvailable: /*return channels available*/

h = NewHandle(sizeof(short) * kChannelsCount);

if (h == nil)

return (MemError());

listPtr = (HandleListPtr) infoPtr;

listPtr->count = 0; /*num. channels in handle*/

listPtr->handle = h; /*handle to be returned*/

sp = (short *) *h; /*store channels in handle*/

for (i = 0; i < kChannelsCount; ++i)

if (hwGlobals->channelsActive[i])

{

listPtr->count++;

*sp++ = hwGlobals->channels[i];

}

break;

case siHardwareVolume:

*((long *)infoPtr) = hwGlobals->volume;

break;

/*If you do not handle a selector, delegate it up the chain.*/

default:

result = SoundComponentGetInfo(globals->sourceComponent, sourceID,

selector, infoPtr);

break;

}

return (result);

}

You can define your MySoundComponentSetInfo routine in an exactly similar fashion.
Writing a Sound Component 5-21

C H A P T E R 5

Sound Components
Sound Components Reference 5

This section describes the constants, data structures, and routines you can use to write a
sound component. It also describes the routines that your sound component should call
in response to a sound component selector. See “Writing a Sound Component” on
page 5-8 for information on creating a component that contains these component-defined
routines.

Constants 5
This section provides details on the constants defined by the Sound Manager for use
with sound components. You’ll use these constants to

■ determine the kind of information the Sound Manager wants your sound component
to return to it or settings it wants your sound component to change

■ define the format of the audio data your sound component is currently producing

■ specify the action flags for the SoundComponentPlaySourceBuffer function

■ specify the format of the data your sound output device component expects to receive

Sound Component Information Selectors 5

The Sound Manager calls your sound component’s SoundComponentGetInfo and
SoundComponentSetInfo functions to determine the capabilities of your component
and to change those capabilities. It passes those functions a sound component
information selector in the function’s selector parameter to specify the type of
information it wants to get or set. The available sound component information selectors
are defined by constants.

Note
Most of these selectors can be passed to both
SoundComponentGetInfo and SoundComponentSetInfo.
Some of them, however, can be sent to only one or the other. ◆

#define siChannelAvailable 'chav' /*number of channels available*/

#define siCompressionAvailable 'cmav' /*compression types available*/

#define siCompressionFactor 'cmfa' /*current compression factor*/

#define siCompressionType 'comp' /*current compression type*/

#define siHardwareMute 'hmut' /*current hardware mute state*/

#define siHardwareVolume 'hvol' /*current hardware volume*/

#define siHardwareVolumeSteps 'hstp' /*number of hardware volume steps*/

#define siHeadphoneMute 'pmut' /*current headphone mute state*/

#define siHeadphoneVolume 'pvol' /*current headphone volume*/
5-22 Sound Components Reference

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
#define siHeadphoneVolumeSteps 'hdst' /*num. of headphone volume steps*/

#define siNumberChannels 'chan' /*current number of channels*/

#define siQuality 'qual' /*current quality*/

#define siRateMultiplier 'rmul' /*current rate multiplier*/

#define siSampleRate 'srat' /*current sample rate*/

#define siSampleRateAvailable 'srav' /*sample rates available*/

#define siSampleSize 'ssiz' /*current sample size*/

#define siSampleSizeAvailable 'ssav' /*sample sizes available*/

#define siSpeakerMute 'smut' /*current speaker mute*/

#define siSpeakerVolume 'svol' /*current speaker volume*/

#define siVolume 'volu' /*current volume setting*/

Constant descriptions

siChannelAvailable
Get the maximum number of channels this sound component can
manage, as well as the channels themselves. The infoPtr
parameter points to a record of type SoundInfoList, which
contains an integer (the number of available channels) and a
handle to an array of integers (which represent the channel
numbers themselves).

siCompressionAvailable
Get the number and list of compression types this sound
component can manage. The infoPtr parameter points to a
record of type SoundInfoList, which contains the number of
compression types, followed by a handle that references a list
of compression types, each of type OSType.

siCompressionFactor
Get information about the current compression type. The
infoData parameter points to a compression information record
(see page 5-32).

siCompressionType
Get or set the current compression type. The infoPtr parameter
points to a buffer of type OSType, which is the compression type.

siHardwareMute
Get or set the current mute state of the audio hardware. A value of 0
indicates that the hardware is not muted, and a value of 1 indicates
that the hardware is muted. Not all sound components need to
support this selector; it’s intended for sound output device
components whose associated hardware can be muted.

siHardwareVolume
Get or set the current volume level of all sounds produced on the
sound output device. The infoPtr parameter points to a long
integer, where the high-order word represents the right volume
level and the low-order word represents the left volume level. A
volume level is specified by an unsigned 16-bit number: 0x0000
represents silence and 0x0100 represents full volume. (You can use
the constant kFullVolume for full volume.) You can specify values
Sound Components Reference 5-23

C H A P T E R 5

Sound Components
larger than 0x0100 to overdrive the volume, although doing so
might result in clipping. This selector applies to the volume of
the output device, whereas the siVolume selector applies to the
volume of a specific sound channel and its component chain. If
a sound output device supports more than one output port (for
example, both headphones and speakers), the siHardwareVolume
selector applies to all those ports.

siHardwareVolumeSteps
Get the number of audible volume levels supported by the audio
hardware. If the device supports a range of volume levels (for
example, 0x000 to 0x1000), you should return only the number of
levels that are audible. The Sound Manager uses this information
to handle the volume slider in the Alert Sounds control panel.

siHeadphoneMute
Get or set the current mute state of the headphone. A value of 0
indicates that the headphone is not muted, and a value of 1
indicates that the headphone is muted. Not all sound components
need to support this selector; it’s intended for sound output device
components whose associated headphone can be muted.

siHeadphoneVolume
Get or set the current volume level of all sounds produced on the
headphone. The infoPtr parameter points to a long integer, where
the high-order word represents the right volume level and the
low-order word represents the left volume level. A volume level is
specified by an unsigned 16-bit number: 0x0000 represents silence
and 0x0100 represents full volume. (You can use the constant
kFullVolume for full volume.) You can specify values larger than
0x0100 to overdrive the volume, although doing so might result in
clipping. This selector applies to the volume of the headphones.

siHeadphoneVolumeSteps
Get the number of audible volume levels supported by the
headphones. If the headphones support a range of volume levels
(for example, 0x000 to 0x1000), you should return only the number
of levels that are audible.

siNumberChannels
Get or set the current number of audio channels currently being
managed by the sound component. The infoPtr parameter points
to an integer, which is the number of channels. For example, for
stereo sounds, this integer should be 2.

siQuality Get or set the current quality setting for the sound component.
The infoPtr parameter points to a 32-bit value, which typically
determines how much processing should be applied to the audio
data stream.

siRateMultiplier
Get or set the current rate multiplier for the sound component. The
infoPtr parameter points to a buffer of type UnsignedFixed,
which is the multiplier to be applied to the playback rate of the
sound, independent of the base sample rate of the sound. For
example, if the current rate multiplier is 2.0, the sound is played
5-24 Sound Components Reference

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
back at twice the speed specified in the sampleRate field of the
sound component data record.

siSampleRate Get or set the current sample rate of the data being output by the
sound component. The infoPtr parameter points to a buffer of
type UnsignedFixed, which is the sample rate.

siSampleRateAvailable
Get the range of sample rates this sound component can handle.
The infoPtr parameter points to a record of type
SoundInfoList, which is the number of sample rates the
component supports, followed by a handle to a list of sample rates,
each of type UnsignedFixed. The sample rates can be in the range
0 to 65535.65535. If the number of sample rates is 0, then the first
two sample rates in the list define the lowest and highest values in
a continuous range of sample rates.

siSampleSize Get or set the current sample size of the audio data being output by
the sound component. The infoPtr parameter points to an integer,
which is the sample size in bits.

siSampleSizeAvailable
Get the range of sample sizes this sound component can handle.
The infoPtr parameter points to a record of type
SoundInfoList, which is the number of sample sizes the sound
component supports, followed by a handle. The handle references
a list of sample sizes, each of type Integer. Sample sizes are
specified in bits.

siSpeakerMute
Get or set the current mute state of the speakers. A value of 0
indicates that the speakers are not muted, and a value of 1 indicates
that the speakers are muted. Not all sound components need to
support this selector; it’s intended for sound output device
components whose associated speakers can be muted.

siSpeakerVolume
Get or set the current volume level of all sounds produced on the
speakers. The infoPtr parameter points to a long integer, where
the high-order word represents the right volume level and the
low-order word represents the left volume level. A volume level is
specified by an unsigned 16-bit number: 0x0000 represents silence
and 0x0100 represents full volume. (You can use the constant
kFullVolume for full volume.) You can specify values larger than
0x0100 to overdrive the volume, although doing so might result in
clipping. This selector applies to the volume of the speakers.

siVolume Get or set the current volume level of the sound component. The
infoPtr parameter points to a long integer, where the high-order
word represents the right volume level and the low-order word
represents the left volume level. A volume level is specified by an
unsigned 16-bit number: 0x0000 represents silence and 0x0100
represents full volume. (You can use the constant kFullVolume for
full volume.) You can specify values larger than 0x0100 to overdrive
the volume, although doing so might result in clipping. This
selector applies to the volume of a specific sound channel and its
Sound Components Reference 5-25

C H A P T E R 5

Sound Components
component chain, while the siHardwareVolume selector applies
to the volume of the output device.

Audio Data Types 5

You can use the following constants to define the format of the audio data your sound
component is currently producing. You can also define additional data types to denote
your own compression schemes. You pass these constants in the format field of a sound
component data record.

#define kOffsetBinary 'raw '

#define kTwosComplement 'twos'

#define kMACE3Compression 'MAC3'

#define kMACE6Compression 'MAC6'

Constant descriptions

kOffsetBinary The data is noncompressed samples in offset binary format (that is,
values range from 0 to 255).

kTwosComplement
The data is noncompressed samples in two’s complement format
(that is, values range from –128 to 128).

kMACE3Compression
The data is compressed using MACE 3:1 compression.

kMACE6Compression
The data is compressed using MACE 6:1 compression.

Sound Component Features Flags 5

You can use the following constants to define features of your sound component. You
use some combination of these constants to set bits in the componentFlags field of a
component description record, which is contained in a 'thng' resource. These bits
represent the kind of data your component can receive as input, the kind of data your
component can produce as output, the operations your component can perform, and the
performance of your component.

#define k8BitRawIn (1 << 0) /*data flags*/

#define k8BitTwosIn (1 << 1)

#define k16BitIn (1 << 2)

#define kStereoIn (1 << 3)

#define k8BitRawOut (1 << 8)

#define k8BitTwosOut (1 << 9)

#define k16BitOut (1 << 10)

#define kStereoOut (1 << 11)

#define kReverse (1 << 16) /*action flags*/

#define kRateConvert (1 << 17)
5-26 Sound Components Reference

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
#define kCreateSoundSource (1 << 18)

#define kHighQuality (1 << 22) /*performance flags*/

#define kRealTime (1 << 23)

Constant descriptions

k8BitRawIn The component can accept 8 bit offset binary data as input.
k8BitTwosIn The component can accept 8 bit two’s complement data as input.
k16BitIn The component can accept 16 bit data as input. 16 bit data is always

in two’s complement format.
kStereoIn The component can accept stereo data as input.
k8BitRawOut The component can produce 8 bit offset binary data as output.
k8BitTwosOut The component can produce 8 bit two’s complement data as output.
k16BitOut The component can produce 16 bit data as output. 16 bit data is

always in two’s complement format.
kStereoOut The component can produce stereo data as output.
kReverse The component can accept reversed audio data.
kRateConvert The component can convert sample rates.
kCreateSoundSource

The component can create sound sources.
kHighQuality The component can produce high quality output.
kRealTime The component can operate in real time.

Action Flags 5

You can use constants to specify the action flags in the actions parameter of the
SoundComponentPlaySourceBuffer function. See page 5-49 for information about
this function.

#define kSourcePaused (1 << 0)

#define kPassThrough (1 << 16)

#define kNoSoundComponentChain (1 << 17)

Constant descriptions

kSourcePaused If this bit is set, the component chain is configured to play the
specified sound but the playback is initially paused. In this case,
your SoundComponentStartSource function must be called to
begin playback. If this bit is clear, the playback begins immediately
once the component chain is set up and configured.

kPassThrough If this bit is set, the Sound Manager passes all data through to the
sound output device component unmodified. A sound output
device component that can handle any sample rate and sound
format described in a sound parameter block should set this bit.

kNoSoundComponentChain
If this bit is set, the Sound Manager does not construct a component
chain for processing the sound data.
Sound Components Reference 5-27

C H A P T E R 5

Sound Components
Data Format Flags 5

You can use constants to set or clear flag bits in the outputFlags parameter passed to
the OpenMixerSoundComponent routine. These flags specify the format of the data
your sound output device component expects to receive. See page 5-33 for information
about the OpenMixerSoundComponent function.

IMPORTANT

Most of these flags are ignored unless the kNoMixing flag is set,
because a sound output device component cannot perform data
modifications such as sample rate conversion or sample size conversion
unless it is also able to mix sound sources. ▲

#define kNoMixing (1 << 0) /*don't mix sources*/

#define kNoSampleRateConversion (1 << 1) /*don't convert sample rate*/

#define kNoSampleSizeConversion (1 << 2) /*don't convert sample size*/

#define kNoSampleFormatConversion \

(1 << 3) /*don't convert sample format*/

#define kNoChannelConversion (1 << 4) /*don't convert stereo/mono*/

#define kNoDecompression (1 << 5) /*don't decompress*/

#define kNoVolumeConversion (1 << 6) /*don't apply volume*/

#define kNoRealtimeProcessing (1 << 7) /*don't run at interrupt time*/

Constant descriptions

kNoMixing If this bit is set, the Apple Mixer does not mix audio data sources.
kNoSampleRateConversion

If this bit is set, the sound component chain does not perform
sample rate conversion (for example, converting 11 kHz data to
22 kHz data).

kNoSampleSizeConversion
If this bit is set, the sound component chain does not perform
sample size conversion (for example, converting 8-bit data to
16-bit data).

kNoSampleFormatConversion
If this bit is set, the sound component chain does not convert
between sample formats (for example, converting from two’s
complement data to offset binary data). Most sound output devices
on Macintosh computers accept only 8-bit offset binary data, which
is therefore the default type of data produced by the Apple Mixer.
If your output device can handle either offset binary or two’s
complement data, you should set this flag. Note that 16-bit data
is always in two’s complement format.

kNoChannelConversion
If this bit is set, the sound component chain does not convert
channels (for example, converting monophonic channels to stereo
or stereo channels to monophonic).

kNoDecompression
If this bit is set, the sound component chain does not decompress
5-28 Sound Components Reference

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
audio data. If your output device can decompress data, you should
set this flag.

kNoVolumeConversion
If this bit is set, the sound component chain does not convert
volumes.

kNoRealtimeProcessing
If this bit is set, the sound component chain does not do any
processing at interrupt time.

Data Structures 5
This section describes the data structures you need to use when writing a sound
component.

Sound Component Data Records 5

The flow of data from one sound component to another is managed using a sound
component data record. This record indicates to other sound components the format of
the data that a particular component is generating, together with the location and length
of the buffer containing that data. This allows other sound components to access data
from that component as needed. A sound component data record is defined by the
SoundComponentData data type.

typedef struct {

long flags; /*sound component flags*/

OSType format; /*data format*/

short numChannels; /*number of channels in data*/

short sampleSize; /*size of a sample*/

UnsignedFixed sampleRate; /*sample rate*/

long sampleCount; /*number of samples in buffer*/

Byte *buffer; /*location of data*/

long reserved; /*reserved*/

} SoundComponentData, *SoundComponentDataPtr;

Field descriptions

flags A set of bit flags whose meanings are specific to a particular sound
component.

format The format of the data a sound component is producing. The
following formats are defined by Apple:

#define kOffsetBinary 'raw '

#define kTwosComplement 'twos'

#define kMACE3Compression 'MAC3'

#define kMACE6Compression 'MAC6'
Sound Components Reference 5-29

C H A P T E R 5

Sound Components
See “Audio Data Types” on page 5-26 for a description of these
formats. You can define additional format types, which are
currently assumed to be the types of proprietary compression
algorithms.

numChannels The number of channels of sound in the output data stream. If this
field contains the value 1, the data is monophonic. If this field
contains 2, the data is stereophonic. Stereo data is stored as
interleaved samples, in a left-to-right ordering.

sampleSize The size, in bits, of each sample in the output data stream. Typically
this field contains the values 8 or 16. For compressed sound data,
this field indicates the size of the samples after the data has been
expanded.

sampleRate The sample rate for the audio data. The sample rate is expressed as
an unsigned, fixed-point number in the range 0 to 65536.0 samples
per second.

sampleCount The number of samples in the buffer pointed to by the buffer
field. For compressed sounds, this field indicates the number of
compressed samples in the sound, not the size of the buffer.

buffer The location of the buffer that contains the sound data.
reserved Reserved for future use. You should set this field to 0.

Sound Parameter Blocks 5

The Sound Manager passes a component’s SoundComponentPlaySourceBuffer
function a sound parameter block that describes the source data to be modified or sent
to a sound output device. A sound parameter block is defined by the
SoundParamBlock data type.

struct SoundParamBlock {

long recordSize; /*size of this record in bytes*/

SoundComponentData desc; /*description of sound buffer*/

Fixed rateMultiplier;/*rate multiplier*/

short leftVolume; /*volume on left channel*/

short rightVolume; /*volume on right channel*/

long quality; /*quality*/

ComponentInstance filter; /*filter*/

SoundParamProcPtr moreRtn; /*routine to call to get more data*/

SoundParamProcPtr completionRtn; /*buffer complete routine*/

long refCon; /*user refcon*/

short result; /*result*/

};

typedef struct SoundParamBlock SoundParamBlock;

typedef SoundParamBlock *SoundParamBlockPtr;

Field descriptions

recordSize The length, in bytes, of the sound parameter block.
5-30 Sound Components Reference

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
desc A sound component data record that describes the format, size, and
location of the sound data. See “Sound Component Data Records”
on page 5-29 for a description of the sound component data record.

rateMultiplier
A multiplier to be applied to the playback rate of the sound. This
field contains an unsigned fixed-point number. If, for example, this
field has the value 2.0, the sound is played back at twice the rate
specified in the sampleRate field of the sound component data
record contained in the desc field.

leftVolume The playback volume for the left channel. You specify a volume
with 16-bit value, where 0 (hexadecimal 0x0000) represents no
volume and 256 (hexadecimal 0x0100) represents full volume. You
can overdrive a channel’s volume by passing volume levels greater
than 0x0100.

rightVolume The playback volume for the right channel. You specify a volume
with 16-bit value, where 0 (hexadecimal 0x0000) represents no
volume and 256 (hexadecimal 0x0100) represents full volume. You
can overdrive a channel’s volume by passing volume levels greater
than 0x0100.

quality The level of quality for the sound. This value usually determines
how much processing should be applied during audio data
processing (such as rate conversion and decompression) to increase
the output quality of the sound.

filter Reserved for future use. You should set this field to nil.
moreRtn A pointer to a callback routine that is called to retrieve another

buffer of audio data. This field is used internally by the Sound
Manager.

completionRtn A pointer to a callback routine that is called when the sound has
finished playing. This field is used internally by the Sound Manager.

refCon A value that is to be passed to the callback routines specified in the
moreRtn and completionRtn fields. You can use this field to pass
information (for example, the address of a structure) to a callback
routine.

result The status of the sound that is playing. The value 1 indicates that
the sound is currently playing. The value 0 indicates that the sound
has finished playing. Any negative value indicates that some error
has occurred.

Sound Information Lists 5

The SoundComponentGetInfo and SoundComponentSetInfo functions access
information about a sound component using a sound information list, which is defined
by the SoundInfoList data type.
Sound Components Reference 5-31

C H A P T E R 5

Sound Components
typedef struct {

short count;

Handle handle;

} SoundInfoList, *SoundInfoListPtr;

Field descriptions

count The number of elements in the array referenced by the handle field.
handle A handle to an array of data elements. The type of these data

elements depends on the kind of information requested, which
is determined by the selector parameter passed to
SoundComponentGetInfo or SoundComponentSetInfo. See
“Sound Component Information Selectors” beginning on page 5-22
for information about the available information selectors.

Compression Information Records 5

When the Sound Manager calls your SoundComponentGetInfo routine with the
siCompressionFactor selector, you need to return a pointer to a compression
information record, which is defined by the CompressionInfo data type.

typedef struct {

long recordSize;

OSType format;

short compressionID;

short samplesPerPacket;

short bytesPerPacket;

short bytesPerFrame;

short bytesPerSample;

short futureUse1;

} CompressionInfo, *CompressionInfoPtr, **CompressionInfoHandle;

Field descriptions

recordSize The size of this compression information record.
format The compression format.
compressionID The compression ID.
samplesPerPacket

The number of samples in each packet.
bytesPerPacket

The number of bytes in each packet.
bytesPerFrame

The number of bytes in each frame.
bytesPerSample

The number of bytes in each sample.
futureUse1 Reserved for use by Apple Computer, Inc. You should set this

field to 0.
5-32 Sound Components Reference

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
Sound Manager Utilities 5
This section describes several utility routines provided by the Sound Manager that are
intended for use only by sound components. You can use these routines to

■ open and close the Apple Mixer component

■ save and restore a user’s preference settings for a sound component

Note
For a description of the routines that a sound component must
implement, see “Sound Component-Defined Routines” on page 5-36. ◆

Opening and Closing the Apple Mixer Component 5

A sound output device component needs to open and close one or more instances of the
Apple Mixer component.

OpenMixerSoundComponent 5

A sound output device component can use the OpenMixerSoundComponent function
to open and connect itself to the Apple Mixer component.

pascal OSErr OpenMixerSoundComponent

(SoundComponentDataPtr outputDescription,

long outputFlags,

ComponentInstance *mixerComponent);

outputDescription
A description of the data format your sound output device is expecting to
receive.

outputFlags
A set of 32 bit flags that provide additional information about the data
format your output device is expecting to receive. See “Data Format
Flags” beginning on page 5-28 for a description of the constants you
can use to select bits in this parameter.

mixerComponent
The component instance of the Apple Mixer component. You need
this instance to call the SoundComponentGetSourceData and
CloseMixerSoundComponent functions.

DESCRIPTION

The OpenMixerSoundComponent function opens the standard Apple Mixer
component and creates a connection between your sound output device component
and the Apple Mixer. If your output device can perform specific operations on the
Sound Components Reference 5-33

C H A P T E R 5

Sound Components
stream of audio data, such as channel mixing and rate conversion, it should call
OpenMixerSoundComponent as many times as are necessary to create a unique
component chain for each sound source. If, on the other hand, your output device does
not perform channel mixing, it should call OpenMixerSoundComponent only once,
from its SoundComponentInitOutputDevice function. This opens a single instance
of the Apple Mixer component, which in turn manages all the available sound sources.

Your component specifies the format of the data it can handle by filling in a sound
component data record and passing its address in the outputDescription parameter.
The sound component data record specifies the data format as well as the sample rate
and sample size expected by the output device component. If these specifications are
sufficient to determine the kind of data your component can handle, you should pass
the value 0 in the outputFlags parameter. Otherwise, you can set flags in the
outputFlags parameter to select certain kinds of input data. For example, you can set
the kNoChannelConversion flag to prevent the component chain from converting
monophonic sound to stereo sound, or stereo sound to monophonic sound. See “Data
Format Flags” beginning on page 5-28 for a description of the constants you can use to
select bits in the outputFlags parameter.

SPECIAL CONSIDERATIONS

The OpenMixerSoundComponent function is available only in versions 3.0 and later of
the Sound Manager. It should be called only by sound output device components.

CloseMixerSoundComponent 5

A sound output device component can use the CloseMixerSoundComponent function
to close the Apple Mixer.

pascal OSErr CloseMixerSoundComponent (ComponentInstance ci);

ci The component instance of the Apple Mixer component.

DESCRIPTION

The CloseMixerSoundComponent function closes the Apple Mixer component
instance specified by the ci parameter. Your output device component should call
this function when it is being closed.

SPECIAL CONSIDERATIONS

The CloseMixerSoundComponent function is available only in versions 3.0 and later
of the Sound Manager. It should be called only by sound output device components.
5-34 Sound Components Reference

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
RESULT CODES

Saving and Restoring Sound Component Preferences 5

A sound component can use the SetSoundPreference and GetSoundPreference
functions to save and restore a user’s preference settings.

SetSoundPreference 5

A sound component can use the SetSoundPreference function to have the Sound
Manager store a block of preferences data in a resource file. You’re most likely to use
this function in a sound output device component, although other types of sound
components can use it also.

pascal OSErr SetSoundPreference (OSType type, Str255 name,

Handle settings);

type The resource type to be used to create the preferences resource.

name The resource name to be used to create the preferences resource.

settings A handle to the data to be stored in the preferences resource.

DESCRIPTION

The SetSoundPreference function causes the Sound Manager to attempt to create
a new resource that contains preferences data for your sound component. You can use
this function to maintain a structure of any format across subsequent startups of the
machine. You’ll retrieve the preferences data by calling the GetSoundPreference
function. The data is stored in a resource with the specified type and name in a resource
file in the Preferences folder in the System Folder. In general, the resource type and name
should be the same as the sound component subtype and name.

The settings parameter is a handle to the preferences data you want to store. It is the
responsibility of your component to allocate and initialize the block of data referenced
by that handle. The Sound Manager copies the handle’s data into a resource in the
appropriate location. Your sound component should dispose of the handle when
SetSoundPreference returns.

The format of the block of preferences data referenced by the settings parameter
is defined by your sound component. It is recommended that you include a field
specifying the version of the data format; this allows you to modify the format of the
block of data while remaining compatible with previous formats you might have defined.

noErr 0 No error
invalidComponentID –3000 Invalid component ID
Sound Components Reference 5-35

C H A P T E R 5

Sound Components
SPECIAL CONSIDERATIONS

The SetSoundPreference function is available only in versions 3.0 and later of the
Sound Manager.

GetSoundPreference 5

A sound component can use the GetSoundPreference function to have the Sound
Manager read a block of preferences data from a resource file. You’ll use it to retrieve a
block of preferences data you previously saved by calling SetSoundPreference.

pascal OSErr GetSoundPreference (OSType type, Str255 name,

Handle settings);

type The resource type of the preferences resource.

name The resource name of the preferences resource.

settings A handle to the data in the preferences resource.

DESCRIPTION

The GetSoundPreference function retrieves the block of preferences data you
previously stored in a resource by calling the SetSoundPreference function. It is
the responsibility of your component to allocate the block of data referenced by the
settings handle. The Sound Manager resizes the handle (if necessary) and fills it with
data from the resource with the specified type and name. Your sound component should
dispose of the handle once it’s finished reading the data from it. You can determine the
size of the handle returned by the Sound Manager by calling the Memory Manager’s
GetHandleSize function.

SPECIAL CONSIDERATIONS

The GetSoundPreference function is available only in versions 3.0 and later of the
Sound Manager.

Sound Component-Defined Routines 5
This section describes the routines you need to define in order to write a sound
component. You need to write routines to

■ load, configure, and unload your sound component

■ add and remove audio sources

■ read and set component settings

■ control and process audio data
5-36 Sound Components Reference

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
Some of these routines are optional for some types of sound components. All routines
return result codes. If they succeed, they should return noErr. To simplify dispatching,
the Component Manager requires these routines to return a value of type
ComponentResult.

See “Writing a Sound Component” beginning on page 5-8 for a description of how
you call these routines from within a sound component. See “Sound Manager Utilities”
beginning on page 5-33 for a description of some Sound Manager utility routines you
can use in a sound component.

Managing Sound Components 5

To write a sound component, you might need to define routines that manage the
loading, configuration, and unloading of your sound component:

■ SoundComponentInitOutputDevice

■ SoundComponentSetSource

■ SoundComponentGetSource

■ SoundComponentGetSourceData

■ SoundComponentSetOutput

After the Sound Manager opens your sound component, it attempts to add your sound
component to a sound component chain. Thereafter, the Sound Manager calls your
component’s SoundComponentInitOutputDevice function to give you an
opportunity to set default values for any associated hardware and to perform any
hardware-specific operations.

SoundComponentInitOutputDevice 5

A sound output device component must implement the
SoundComponentInitOutputDevice function. The Sound Manager calls this
function to allow a sound output device component to configure any associated
hardware devices.

pascal ComponentResult SoundComponentInitOutputDevice

(ComponentInstance ti, long actions);

ti A component instance that identifies your sound component.

actions A set of flags. This parameter is currently unused.

DESCRIPTION

Your SoundComponentInitOutputDevice function is called by the Sound Manager
at noninterrupt time to allow your sound output device component to perform any
hardware-specific initialization. You should perform any necessary initialization that
Sound Components Reference 5-37

C H A P T E R 5

Sound Components
was not already performed in your OpenComponent function. Note that your
OpenComponent function cannot assume that the appropriate hardware is available. As
a result, the Sound Manager calls your SoundComponentInitOutputDevice function
when it is safe to communicate with your audio hardware. You can call the
OpenMixerSoundComponent function to create a single sound component chain.

SPECIAL CONSIDERATIONS

Your SoundComponentInitOutputDevice function is always called at noninterrupt
time. All other component-defined routines might be called at interrupt time.
Accordingly, your SoundComponentInitOutputDevice function should handle any
remaining memory allocation needed by your component and it should lock down
any relocatable blocks your component will access.

RESULT CODES

Your SoundComponentInitOutputDevice function should return noErr if
successful or an appropriate result code otherwise.

SEE ALSO

See Listing 5-4 on page 5-17 for a sample SoundComponentInitOutputDevice
function.

SoundComponentSetSource 5

A sound component can implement the SoundComponentSetSource function. The
Sound Manager calls this function to identify your component’s source component.

pascal ComponentResult SoundComponentSetSource

(ComponentInstance ti,

SoundSource sourceID,

ComponentInstance source);

ti A component instance that identifies your sound component.

sourceID A source ID for the source component chain created by the Apple Mixer.

source A component instance that identifies your source component.

DESCRIPTION

Your SoundComponentSetSource function is called by the Sound Manager to identify
to your sound component the sound component that is its source. The source component
is identified by the source parameter. Your component uses that information when it
5-38 Sound Components Reference

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
needs to obtain more data from its source (usually, by calling its
SoundComponentGetSourceData function).

Because a sound output device component is always connected directly to one or
more instances of the Apple Mixer, the SoundComponentSetSource function needs
to be implemented only by utility components (that is, components that perform
modifications on sound data). Utility components are linked together into a chain of
sound components, each link of which has only one input source. As a result, a utility
component can usually ignore the sourceID parameter passed to it.

RESULT CODES

Your SoundComponentSetSource function should return noErr if successful or an
appropriate result code otherwise.

SoundComponentGetSource 5

A sound component can implement the SoundComponentGetSource function. The
Sound Manager calls this function to determine your component’s source component.

pascal ComponentResult SoundComponentGetSource

(ComponentInstance ti,

SoundSource sourceID,

ComponentInstance *source);

ti A component instance that identifies your sound component.

sourceID A source ID for the source component chain created by the Apple Mixer.

source A component instance that identifies your source component.

DESCRIPTION

Your SoundComponentGetSource function is called by the Sound Manager to retrieve
your component’s source component instance. Your component should return, in the
source parameter, the component instance of your component’s source. This should be
the source component instance your component was passed when the Sound Manager
called your SoundComponentSetSource function.

In general, all sound components have sources, except for the source at the beginning
of the source component chain. In the unlikely event that your component does not have
a source, you should return nil in the source parameter. A sound output device
component is always connected directly to an instance of the Apple Mixer. Accordingly,
a sound output device component should return a component instance of the Apple
Mixer in the source parameter and a source ID in the sourceID parameter. A utility
component can ignore the sourceID parameter.
Sound Components Reference 5-39

C H A P T E R 5

Sound Components
RESULT CODES

Your SoundComponentGetSource function should return noErr if successful or an
appropriate result code otherwise.

SoundComponentGetSourceData 5

A utility component must implement the SoundComponentGetSourceData function.
A sound output device component calls this function on its source component when it
needs more data.

pascal ComponentResult SoundComponentGetSourceData

(ComponentInstance ti,

SoundComponentDataPtr *sourceData);

ti A component instance that identifies your sound component.

sourceData
On output, a pointer to a sound component data record that specifies the
type and location of the data your component has processed.

DESCRIPTION

Your SoundComponentGetSourceData function is called when the sound component
immediately following your sound component in the sound component chain needs
more data. Your function should generate a new block of audio data, fill out a sound
component data record describing the format and location of that data, and then return
the address of that record in the sourceData parameter.

Your SoundComponentGetSourceData function might itself need to get more data
from its source component. To do this, call through to the source component’s
SoundComponentGetSourceData function. If your component cannot generate any
more data, it should set the sampleCount field of the sound component data record
to 0 and return noErr.

IMPORTANT

Sound output device components do not need to implement this
function, but all utility components must implement it. ▲

RESULT CODES

Your SoundComponentGetSourceData function should return noErr if successful or
an appropriate result code otherwise.
5-40 Sound Components Reference

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
SoundComponentSetOutput 5

A sound output device component can call the SoundComponentSetOutput function
of the Apple Mixer to indicate the type of data it expects to receive.

pascal ComponentResult SoundComponentSetOutput

(ComponentInstance ti,

SoundComponentDataPtr requested,

SoundComponentDataPtr *actual);

ti A component instance that identifies your sound component.

requested
A pointer to a sound component data record that specifies the type of the
data your component expects to receive.

actual
This parameter is currently unused.

DESCRIPTION

The Apple Mixer’s SoundComponentSetOutput function can be called by a sound
output device component to specify the kind of audio data the output device component
wants to receive. The Apple Mixer uses that information to determine the type of sound
component chain it needs to construct in order to deliver that kind of audio data to your
sound output device component. For example, if your sound output device is able to
accept 16-bit samples, the Sound Manager doesn’t need to convert 16-bit audio data into
8-bit data.

The following lines of code illustrate how the sound output device component for the
Apple Sound Chip might call Apple Mixer’s SoundComponentSetOutput function:

myDataRec.flags = 0; /*ignored here*/

myDataRec.format = kOffsetBinary; /*ASC needs offset binary*/

myDataRec.sampleRate = rate22khz; /*ASC needs 22 kHz samples*/

myDataRec.sampleSize = 8; /*ASC needs 8-bit data*/

myDataRec.numChannels = 2; /*ASC can do stereo*/

myDataRec.sampleCount = 1024; /*ASC uses a 1K FIFO*/

myErr = SoundComponentSetOutput(mySource, &myDataRec, &myActual);

In general, however, a sound output device component shouldn’t need to call the Apple
Mixer’s SoundComponentSetOutput function. Instead, it can indicate the type of data
it expects to receive when it calls the OpenMixerSoundComponent function. The
SoundComponentSetOutput function is intended for sophisticated sound output
device components that might want to reinitialize the Apple Mixer.

IMPORTANT

Only the Apple Mixer component needs to implement this function. ▲
Sound Components Reference 5-41

C H A P T E R 5

Sound Components
RESULT CODES

The Apple Mixer’s SoundComponentSetOutput function returns noErr if successful
or an appropriate result code otherwise.

Creating and Removing Audio Sources 5

To write a sound output device component, you might need to define two routines that
create and remove audio sources:

■ SoundComponentAddSource

■ SoundComponentRemoveSource

Your component needs to contain these functions only if, like the Apple Mixer, it can mix
two or more audio channels into a single output stream. Sound components that operate
on a single input stream only do not need to include these functions.

SoundComponentAddSource 5

A sound output device component that can mix multiple channel of audio data must
implement the SoundComponentAddSource function to add a new sound source.

pascal ComponentResult SoundComponentAddSource

(ComponentInstance ti, SoundSource *sourceID);

ti A component instance that identifies your sound component.

sourceID On exit, a source ID for the newly created source component chain.

DESCRIPTION

The SoundComponentAddSource function is called by the Sound Manager to create a
new sound source. If your sound output device component can mix multiple channels
of sound, it needs to define this function. Your SoundComponentAddSource function
should call the Sound Manager function OpenMixerSoundComponent to create an new
instance of the Apple Mixer component. The Apple Mixer component then creates a
sound component chain capable of generating the type of data your sound output device
component wants to receive.

The Apple Mixer also assigns a unique 4-byte source ID that identifies the new sound
source and component chain. You can retrieve that source ID by calling the Apple
Mixer’s SoundComponentAddSource function. Your SoundComponentAddSource
function should then pass that source ID back to the Sound Manager in the sourceID
parameter.
5-42 Sound Components Reference

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
IMPORTANT

Most sound components do not need to implement the
SoundComponentAddSource function. Only sound components that
can handle more than one source of input need to define it. ▲

SPECIAL CONSIDERATIONS

The SoundComponentAddSource function is called at noninterrupt time.

RESULT CODES

Your SoundComponentAddSource function should return noErr if successful or an
appropriate result code otherwise.

SEE ALSO

See page 5-33 for a description of OpenMixerSoundComponent.

SoundComponentRemoveSource 5

A sound output device component that implements the SoundComponentAddSource
function must also implement the SoundComponentRemoveSource function to
remove sound sources.

pascal ComponentResult SoundComponentRemoveSource

(ComponentInstance ti, SoundSource sourceID);

ti A component instance that identifies your sound component.

sourceID A source ID for the source component chain to be removed.

DESCRIPTION

Your SoundComponentRemoveSource function is called by the Sound Manager
to remove the existing sound source specified by the sourceID parameter. Your
SoundComponentRemoveSource function should do whatever is necessary to
invalidate that source and then call through to the Apple Mixer’s
SoundComponentRemoveSource function.

IMPORTANT

Most sound components do not need to implement the
SoundComponentRemoveSource function. Only sound components
that can handle more than one source of input need to define it. ▲
Sound Components Reference 5-43

C H A P T E R 5

Sound Components
SPECIAL CONSIDERATIONS

Your SoundComponentRemoveSource function is always called at noninterrupt time.

RESULT CODES

Your SoundComponentRemoveSource function should return noErr if successful or
an appropriate result code otherwise.

Getting and Setting Sound Component Information 5

To write a sound component, you need to define two routines that determine the
capabilities of your component or to change those capabilities:

■ SoundComponentGetInfo

■ SoundComponentSetInfo

SoundComponentGetInfo 5

A sound component must implement the SoundComponentGetInfo function. The
Sound Manager calls this function to get information about the capabilities of your
component.

pascal ComponentResult SoundComponentGetInfo

(ComponentInstance ti,

SoundSource sourceID,

OSType selector, void *infoPtr);

ti A component instance that identifies your sound component.

sourceID A source ID for a source component chain.

selector A sound component information selector. See “Sound Component
Information Selectors” beginning on page 5-22 for a description of the
available selectors.

infoPtr On output, a pointer to the information requested by the caller.

DESCRIPTION

Your SoundComponentGetInfo function returns information about your sound
component. The sourceID parameter specifies the sound source to return information
about, and the selector parameter specifies the kind of information to be returned. If
the information occupies 4 or fewer bytes, it should be returned in the location pointed
to by the infoPtr parameter. If the information is larger than 4 bytes, the infoPtr
parameter is a pointer to a component information list, a 6-byte structure of type
SoundInfoList:
5-44 Sound Components Reference

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
typedef struct {

short count;

Handle handle;

} SoundInfoList, *SoundInfoListPtr;

This structure consists of a count and a handle to a variable-sized array. The count field
specifies the number of elements in the array to which handle is a handle. It is your
component’s responsibility to allocate the block of data referenced by that handle, but it
is the caller’s responsibility to dispose of that handle once it is finished with it.

The data type of the array elements depends on the kind of information being returned.
For example, the selector siSampleSizeAvailable indicates that you should return
a list of the sample sizes your component can support. You return the information by
passing back, in the infoPtr parameter, a pointer to an integer followed by a handle to
an array of integers.

If your component cannot provide the information specified by the selector
parameter, it should pass the selector to its source component.

SPECIAL CONSIDERATIONS

Your SoundComponentGetInfo function is not called at interrupt time if it is passed
a selector that might cause it to allocate memory for the handle in the component
information list.

RESULT CODES

Your SoundComponentGetInfo function should return noErr if successful or an
appropriate result code otherwise.

SEE ALSO

See “Finding and Changing Component Capabilities” on page 5-18 for a sample
SoundComponentGetInfo function.

SoundComponentSetInfo 5

A sound component must implement the SoundComponentSetInfo function. The
Sound Manager calls this function to modify settings of your component.

pascal ComponentResult SoundComponentSetInfo

(ComponentInstance ti,

SoundSource sourceID,

OSType selector, void *infoPtr);

ti A component instance that identifies your sound component.
Sound Components Reference 5-45

C H A P T E R 5

Sound Components
sourceID A source ID for a source component chain.

selector A sound component information selector. See “Sound Component
Information Selectors” beginning on page 5-22 for a description of the
available selectors.

infoPtr A pointer to the information your component is to use to modify its
settings. If the information occupies 4 or fewer bytes, however, this
parameter contains the information itself, not the address of the
information.

DESCRIPTION

Your SoundComponentSetInfo function is called by the Sound Manager to set one
of the settings for your component, as specified by the selector parameter. If the
information associated with that selector occupies 4 or fewer bytes, it is passed on
the stack, in the infoPtr parameter itself. Otherwise, the infoPtr parameter
is a pointer to a structure of type SoundInfoList. See the description of
SoundComponentGetInfo for more information about the SoundInfoList structure.

If your component cannot modify the settings specified by the selector parameter, it
should pass the selector to its source component.

RESULT CODES

Your SoundComponentSetInfo function should return noErr if successful or an
appropriate result code otherwise.

Managing Source Data 5

To write a sound output device component, you might need to define routines that
manage the flow of data in a sound channel:

■ SoundComponentStartSource

■ SoundComponentStopSource

■ SoundComponentPauseSource

■ SoundComponentPlaySourceBuffer

SoundComponentStartSource 5

A sound output device component must implement the
SoundComponentStartSource function. The Sound Manager calls this function to
start playing sounds in one or more sound channels.
5-46 Sound Components Reference

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
pascal ComponentResult SoundComponentStartSource

(ComponentInstance ti,

short count, SoundSource *sources);

ti A component instance that identifies your sound component.

count The number of source IDs in the array pointed to by the source
parameter.

sources An array of source IDs.

DESCRIPTION

Your SoundComponentStartSource function is called by the Sound Manager to begin
playing the sounds originating from the sound sources specified by the sources
parameter. Your function should start (or resume) sending data from those sources to the
associated sound output device. If your component supports only one sound source, you
can ignore the sources parameter.

SPECIAL CONSIDERATIONS

Your SoundComponentStartSource function can be called at interrupt time.

RESULT CODES

Your SoundComponentStartSource function should return noErr if successful or
an appropriate result code otherwise. You should return noErr even if no sounds are
playing in the specified channels.

SoundComponentStopSource 5

A sound output device component must implement the SoundComponentStopSource
function. The Sound Manager calls this function to stop playing sounds in one or more
sound channels.

pascal ComponentResult SoundComponentStopSource

(ComponentInstance ti, short count,

SoundSource *sources);

ti A component instance that identifies your sound component.

count The number of source IDs in the array pointed to by the source
parameter.

sources An array of source IDs.
Sound Components Reference 5-47

C H A P T E R 5

Sound Components
DESCRIPTION

Your SoundComponentStopSource function is called by the Sound Manager to stop
the sounds originating from the sound sources specified by the sources parameter.
Your function should stop sending data from those sources to the associated sound
output device. In addition, your SoundComponentStopSource function should flush
any data from the specified sound sources that it’s caching. If your component supports
only one sound source, you can ignore the sources parameter.

RESULT CODES

Your SoundComponentStopSource function should return noErr if successful or an
appropriate result code otherwise. You should return noErr even if no sounds are
playing in the specified channels.

SoundComponentPauseSource 5

A sound output device component must implement the
SoundComponentPauseSource function. The Sound Manager calls this function to
stop pause the playing of sounds in one or more sound channels.

pascal ComponentResult SoundComponentPauseSource

(ComponentInstance ti,

short count, SoundSource *sources);

ti A component instance that identifies your sound component.

count The number of source IDs in the array pointed to by the source
parameter.

sources An array of source IDs.

DESCRIPTION

Your SoundComponentPauseSource function is called by the Sound Manager to
pause the playing of the sounds originating from the sound sources specified by the
sources parameter. Your function should stop sending data from those sources to
the associated sound output device. Because your SoundComponentStartSource
function might be called to resume playing sounds, you should not flush any data.
If your component supports only one sound source, you can ignore the sources
parameter.

RESULT CODES

Your SoundComponentPauseSource function should return noErr if successful or
an appropriate result code otherwise. You should return noErr even if no sounds are
playing in the specified channels.
5-48 Sound Components Reference

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
SoundComponentPlaySourceBuffer 5

A sound component must implement the SoundComponentPlaySourceBuffer
function. The Sound Manager calls this function to start a new sound playing.

pascal ComponentResult SoundComponentPlaySourceBuffer

(ComponentInstance ti,

SoundSource sourceID,

SoundParamBlockPtr pb,

long actions);

ti A component instance that identifies your sound component.

sourceID A source ID for a source component chain.

pb A pointer to a sound parameter block.

actions A set of 32 bit flags that describe the actions to be taken when preparing
to play the source data. See “Action Flags” on page 5-27 for a description
of the constants you can use to select bits in this parameter.

DESCRIPTION

Your SoundComponentPlaySourceBuffer function is called by the Sound Manager
to start a new sound playing. The sound parameter block pointed to by the pb parameter
specifies the sound to be played. That parameter block should be passed successively to
all sound components in the chain specified by the sourceID parameter. This allows the
components to determine their output formats and playback settings and to prepare for
a subsequent call to their SoundComponentGetSourceData function. It also allows a
sound output device component to prepare for starting up its associated hardware.

RESULT CODES

Your SoundComponentPlaySourceBuffer function should return noErr if
successful or an appropriate result code otherwise.
Sound Components Reference 5-49

C H A P T E R 5

Sound Components
Summary of Sound Components 5

This section provides a C summary for the constants, data types, and routines you can
use to write a sound component. There are currently no Pascal interfaces available for
writing sound components.

C Summary 5

Constants 5

/*component types*/

#define kSoundComponentType 'sift' /*utility component*/

#define kMixerType 'mixr' /*mixer component*/

#define kSoundHardwareType 'sdev' /*sound output device component*/

#define kSoundCompressor 'scom' /*compression component*/

#define kSoundDecompressor 'sdec' /*decompression component*/

#define kNoSoundComponentType '****' /*no type*/

/*subtypes for kSoundComponentType component type*/

#define kRate8SubType 'ratb' /*8-bit rate converter*/

#define kRate16SubType 'ratw' /*16-bit rate converter*/

#define kConverterSubType 'conv' /*sample format converter*/

#define kSndSourceSubType 'sour' /*generic source component*/

/*subtypes for kMixerType component type*/

#define kMixer8SubType 'mixb' /*8-bit mixer*/

#define kMixer16SubType 'mixw' /*16-bit mixer*/

/*subtypes for kSoundHardwareType component type*/

#define kClassicSubType 'clas' /*Classic hardware*/

#define kASCSubType 'asc ' /*ASC device*/

#define kDSPSubType 'dsp ' /*DSP device*/

/*subtypes for kSoundCompressor and kSoundDecompressor component types*/

#define kMace3SubType 'MAC3' /*MACE 3:1*/

#define kMace6SubType 'MAC6 ' /*MACE 6:1*/

#define kCDXA4SubType 'CDX4' /*CD/XA 4:1*/

#define kCDXA2SubType 'CDX2' /*CD/XA 2:1*/

#define kSoundComponentCodeType 'sift' /*sound component code type*/
5-50 Summary of Sound Components

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
/*first selector that can be delegated up the chain*/

#define kDelegatedSoundComponentSelectors 0x0100

/*Component Manager selectors for routines*/

enum {

/*the following calls cannot be delegated*/

kSoundComponentInitOutputDeviceSelect = 1,

kSoundComponentSetSourceSelect,

kSoundComponentGetSourceSelect,

kSoundComponentGetSourceDataSelect,

kSoundComponentSetOutputSelect,

/*the following calls can be delegated*/

kSoundComponentAddSourceSelect = kDelegatedSoundComponentSelectors + 1,

kSoundComponentRemoveSourceSelect,

kSoundComponentGetInfoSelect,

kSoundComponentSetInfoSelect,

kSoundComponentStartSourceSelect,

kSoundComponentStopSourceSelect,

kSoundComponentPauseSourceSelect,

kSoundComponentPlaySourceBufferSelect

};

/*sound component information selectors*/

#define siChannelAvailable 'chav' /*number of channels available*/

#define siCompressionAvailable 'cmav' /*compression types available*/

#define siCompressionFactor 'cmfa' /*current compression factor*/

#define siCompressionType 'comp' /*current compression type*/

#define siHardwareMute 'hmut' /*current hardware mute state*/

#define siHardwareVolume 'hvol' /*current hardware volume*/

#define siHardwareVolumeSteps 'hstp' /*number of hardware volume steps*/

#define siHeadphoneMute 'pmut' /*current headphone mute state*/

#define siHeadphoneVolume 'pvol' /*current headphone volume*/

#define siHeadphoneVolumeSteps 'hdst' /*num. of headphone volume steps*/

#define siNumberChannels 'chan' /*current number of channels*/

#define siQuality 'qual' /*current quality*/

#define siRateMultiplier 'rmul' /*current rate multiplier*/

#define siSampleRate 'srat' /*current sample rate*/

#define siSampleRateAvailable 'srav' /*sample rates available*/

#define siSampleSize 'ssiz' /*current sample size*/

#define siSampleSizeAvailable 'ssav' /*sample sizes available*/

#define siSpeakerMute 'smut' /*current speaker mute*/

#define siSpeakerVolume 'svol' /*current speaker volume*/

#define siVolume 'volu' /*current volume setting*/
Summary of Sound Components 5-51

C H A P T E R 5

Sound Components
/*audio data format types*/

#define kOffsetBinary 'raw '

#define kTwosComplement 'twos'

#define kMACE3Compression 'MAC3'

#define kMACE6Compression 'MAC6'

/*sound component features flags*/

#define k8BitRawIn (1 << 0) /*data flags*/

#define k8BitTwosIn (1 << 1)

#define k16BitIn (1 << 2)

#define kStereoIn (1 << 3)

#define k8BitRawOut (1 << 8)

#define k8BitTwosOut (1 << 9)

#define k16BitOut (1 << 10)

#define kStereoOut (1 << 11)

#define kReverse (1 << 16) /*action flags*/

#define kRateConvert (1 << 17)

#define kCreateSoundSource (1 << 18)

#define kHighQuality (1 << 22) /*performance flags*/

#define kRealTime (1 << 23)

/*action flags for SoundComponentPlaySourceBuffer*/

#define kSourcePaused (1 << 0)

#define kPassThrough (1 << 16)

#define kNoSoundComponentChain (1 << 17)

/*flags for OpenMixerSoundComponent*/

#define kNoMixing (1 << 0) /*don't mix sources*/

#define kNoSampleRateConversion (1 << 1) /*don't convert sample rate*/

#define kNoSampleSizeConversion (1 << 2) /*don't convert sample size*/

#define kNoSampleFormatConversion \

(1 << 3) /*don't convert sample format*/

#define kNoChannelConversion (1 << 4) /*don't convert stereo/mono*/

#define kNoDecompression (1 << 5) /*don't decompress*/

#define kNoVolumeConversion (1 << 6) /*don't apply volume*/

#define kNoRealtimeProcessing (1 << 7) /*don't run at interrupt time*/

/*quality flags*/

#define kBestQuality (1 << 0) /*use interp. in rate conv.*/
5-52 Summary of Sound Components

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
/*volume specifications*/

#define kSilenceByte 0x80

#define kSilenceLong 0x80808080

#define kFullVolume 0x0100

Data Types 5

Unsigned Fixed-Point Numbers

typedef unsigned long UnsignedFixed; /*unsigned fixed-point number*/

Sound Component Data Record

typedef struct {

long flags; /*sound component flags*/

OSType format; /*data format*/

short numChannels; /*number of channels in data*/

short sampleSize; /*size of a sample*/

UnsignedFixed sampleRate; /*sample rate*/

long sampleCount; /*number of samples in buffer*/

Byte *buffer; /*location of data*/

long reserved; /*reserved*/

} SoundComponentData, *SoundComponentDataPtr;

Sound Parameter Block

typedef pascal Boolean (*SoundParamProcPtr)(SoundParamBlockPtr *pb);

struct SoundParamBlock {

long recordSize; /*size of this record in bytes*/

SoundComponentData desc; /*description of sound buffer*/

Fixed rateMultiplier;/*rate multiplier*/

short leftVolume; /*volume on left channel*/

short rightVolume; /*volume on right channel*/

long quality; /*quality*/

ComponentInstance filter; /*filter*/

SoundParamProcPtr moreRtn; /*routine to call to get more data*/

SoundParamProcPtr completionRtn; /*buffer complete routine*/

long refCon; /*user refcon*/

short result; /*result*/

};

typedef struct SoundParamBlock SoundParamBlock;

typedef SoundParamBlock *SoundParamBlockPtr;
Summary of Sound Components 5-53

C H A P T E R 5

Sound Components
Sound Source

typedef struct privateSoundSource *SoundSource;

Sound Information List

typedef struct {

short count;

Handle handle;

} SoundInfoList, *SoundInfoListPtr;

Compression Information Record

typedef struct {

long recordSize;

OSType format;

short compressionID;

short samplesPerPacket;

short bytesPerPacket;

short bytesPerFrame;

short bytesPerSample;

short futureUse1;

} CompressionInfo, *CompressionInfoPtr, **CompressionInfoHandle;

Sound Manager Utilities 5

Opening and Closing the Apple Mixer Component

pascal OSErr OpenMixerSoundComponent
(SoundComponentDataPtr outputDescription,
long outputFlags,
ComponentInstance *mixerComponent);

pascal OSErr CloseMixerSoundComponent
(ComponentInstance ci);

Saving and Restoring Sound Component Preferences

pascal OSErr SetSoundPreference
(OSType type, Str255 name, Handle settings);

pascal OSErr GetSoundPreference
(OSType type, Str255 name, Handle settings);
5-54 Summary of Sound Components

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
Sound Component-Defined Routines 5

Managing Sound Components

pascal ComponentResult SoundComponentInitOutputDevice
(ComponentInstance ti, long actions);

pascal ComponentResult SoundComponentSetSource
(ComponentInstance ti, SoundSource sourceID,
ComponentInstance source);

pascal ComponentResult SoundComponentGetSource
(ComponentInstance ti, SoundSource sourceID,
ComponentInstance *source);

pascal ComponentResult SoundComponentGetSourceData
(ComponentInstance ti,
SoundComponentDataPtr *sourceData);

pascal ComponentResult SoundComponentSetOutput
(ComponentInstance ti,
SoundComponentDataPtr requested,
SoundComponentDataPtr *actual);

Creating and Removing Audio Sources

pascal ComponentResult SoundComponentAddSource
(ComponentInstance ti, SoundSource *sourceID);

pascal ComponentResult SoundComponentRemoveSource
(ComponentInstance ti, SoundSource sourceID);

Getting and Setting Sound Component Information

pascal ComponentResult SoundComponentGetInfo
(ComponentInstance ti, SoundSource sourceID,
OSType selector, void *infoPtr);

pascal ComponentResult SoundComponentSetInfo
(ComponentInstance ti, SoundSource sourceID,
OSType selector, void *infoPtr);

Managing Source Data

pascal ComponentResult SoundComponentStartSource
(ComponentInstance ti, short count,
SoundSource *sources);

pascal ComponentResult SoundComponentStopSource
(ComponentInstance ti, short count,
SoundSource *sources);
Summary of Sound Components 5-55

C H A P T E R 5

Sound Components
pascal ComponentResult SoundComponentPauseSource
(ComponentInstance ti, short count,
SoundSource *sources);

pascal ComponentResult SoundComponentPlaySourceBuffer
(ComponentInstance ti, SoundSource sourceID,
SoundParamBlockPtr pb, long actions);

Assembly-Language Summary 5

Data Structures 5

Sound Component Data Record

Sound Parameter Block

Sound Information List

0 flags long sound component flags
4 format long data format
8 numChannels word number of channels in data

10 sampleSize word size of a sample
12 sampleRate long sample rate (Fixed)
16 sampleCount long number of samples in buffer
20 buffer long location of data
24 reserved long reserved

0 recordSize long size of this record in bytes
4 desc 28 bytes description of sound buffer

32 rateMultiplier long rate multiplier (Fixed)
36 leftVolume word volume on left channel
38 rightVolume word volume on right channel
40 quality long quality
44 filter long filter
48 moreRtn long routine to call to get more data
52 completionRtn long buffer complete routine
56 refCon long user refcon
60 result word result

0 count word number of data items in the handle
2 handle long handle to list of data items
5-56 Summary of Sound Components

C H A P T E R 5

Sound Components

5
S

ound C
om

ponents
Compression Information Record

0 recordSize long the size of this record
4 format 4 bytes compression format
8 compressionID word compression ID

10 samplesPerPacket word the number of samples per packet
12 bytesPerPacket word the number of bytes per packet
14 bytesPerFrame word the number of bytes per frame
16 bytesPerSample word the number of bytes per sample
18 futureUse1 word reserved
Summary of Sound Components 5-57

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Sound TOC
	 Introduction to Sound
	 Sound Manager TOC
	 Sound Manager
	 Sound Input Manager TOC
	 Sound Input Manager
	 Speech Manager TOC
	 Speech Manager
	 Sound Components TOC
	Sound Components
	About Sound Components
	Sound Component Chains
	The Apple Mixer
	The Data Stream

	Writing a Sound Component
	Creating a Sound Component
	Specifying Sound Component Capabilities
	Dispatching to Sound Component-Defined Routines
	Registering and Opening a Sound Component
	Finding and Changing Component Capabilities

	Sound Components Reference
	Constants
	Sound Component Information Selectors
	Audio Data Types
	Sound Component Features Flags
	Action Flags
	Data Format Flags

	Data Structures
	Sound Component Data Records
	Sound Parameter Blocks
	Sound Information Lists
	Compression Information Records

	Sound Manager Utilities
	Opening and Closing the Apple Mixer Component
	Saving and Restoring Sound Component Preferences

	Sound Component-Defined Routines
	Managing Sound Components
	Creating and Removing Audio Sources
	Getting and Setting Sound Component Information
	Managing Source Data

	Summary of Sound Components
	C Summary
	Constants
	Data Types
	Sound Manager Utilities
	Sound Component-Defined Routines

	Assembly-Language Summary
	Data Structures

	 Audio Components TOC
	 Audio Components
	 Glossary
	 Index
	 Colophon

