CHAPTER 5

Sound Components

This chapter describes sound components, which are code modules used by the
Sound Manager to manipulate audio data or to communicate with sound output
devices. Current versions of the Sound Manager allow you to write two kinds of
sound components:

» compression and decompression components (codecs), which allow you to implement
audio data compression and decompression algorithms different from those provided
by the Sound Manager’s MACE (Macintosh Audio Compression and Expansion)
capabilities

» sound output device components, which send audio data directly to sound output
devices

You need to read this chapter only if you are developing a sound output device or if you
want to implement a custom compression and decompression scheme for audio data.
For example, you might write a codec to handle 16-bit audio data compression and
decompression. (The MACE algorithms currently compress and expand only 8-bit data
at ratios of 3:1 and 6:1.)

IMPORTANT

Sound components are loaded and managed by the Sound Manager
and operate transparently to applications. Applications that want to
create sounds must use Sound Manager routines to do so. The routines
described in this chapter are intended for use exclusively by sound
components. a

To use this chapter, you should already be familiar with the general operation of the
Sound Manager, as described in the chapter “Introduction to Sound on the Macintosh”
in this book. Because sound components are components, you also need to be familiar
with the Component Manager, described in Inside Macintosh: More Macintosh Toolbox. If
you are developing a sound output device component, you need to be familiar with the
process of installing a driver and handling interrupts created by your hardware device.
See Inside Macintosh: Devices for complete information on devices and device drivers.

If you're developing a sound output device, you might also need to write a control panel
extension that installs a custom subpanel into the Sound control panel. For example,
your subpanel could allow the user to set various characteristics of the sound your
output device is creating. For complete information on writing control panel subpanels,
see the chapter “Control Panel Extensions” in Inside Macintosh: Operating System Utilities.

This chapter begins with a general description of sound components and how they are
managed by the Sound Manager. Then it provides instructions on how to write a sound
component. The section “Sound Components Reference” beginning on page 5-22
describes the sound component selectors your component might need to handle and the
component-defined routines that your sound component should call in response to those
the sound component selectors. It also describes a small number of Sound Manager
utility routines that your sound component can use.

5-3

sjuauodwo) punos m



CHAPTER 5

Sound Components

Note

Pascal interfaces for sound components are not currently available. As a
result, this chapter provides all source code examples and reference
materials in C. O

About Sound Components

5-4

A sound component is a component that works with the Sound Manager to manipulate
audio data or to communicate with a sound output device. Sound components provide
the foundation for the modular, device-independent sound architecture introduced with
Sound Manager version 3.0. This section provides a description of sound components
and shows how they are managed by the Sound Manager. For specific information on
creating a sound component, see “Writing a Sound Component” beginning on page 5-8.

Sound Component Chains

Prior to version 3.0, the Sound Manager performed all audio data processing internally,
using its own filters to decompress audio data, convert sample rates, mix separate sound
channels, and so forth. This effectively rendered it difficult, if not impossible, to add
other data modification filters to process the audio data. (The now-obsolete method of
installing a sound modifier with the SndAddModi f i er routine did not work reliably.)
More importantly, the Sound Manager was responsible for managing the entire stream of
audio data, from the application to the available sound-producing audio hardware. This
made it very difficult to support new sound output devices.

In versions 3.0 and later, the Sound Manager provides a new audio data processing
architecture based on components, illustrated in Figure 5-1. The fundamental idea is that
the process of playing a sound can be divided into a number of specific steps, each of
which has well-defined inputs and outputs. Figure 5-1 shows the steps involved in
playing an 11 kHz compressed sampled sound resource on a Macintosh II computer.

An application sends the compressed sound data to the Sound Manager, which
constructs an appropriate sound component chain that links the unprocessed audio
data to the sound components required to modify the data into a form that can be sent to
the current sound output device. As you can see in Figure 5-1, the Sound Manager links
together sound components that, in sequence, expand the compressed sound data into
audio samples, convert the sample rate from 11 kHz to 22 kHz, mix those samples with
samples from any other sound channels that might be playing, and then write the
samples to the available audio hardware (in this case, the FIFO bulffer in the

Apple Sound Chip).

IMPORTANT

The Sound Manager itself converts both wave-table data and
square-wave data into sampled-sound data before sending the data
into a chain of sound components. As a result, sound components need
to be concerned only with sampled-sound data. a

About Sound Components



CHAPTER 5

Sound Components

Figure 5-1 The component-based sound architecture
. Rate Output device
Sound = Expansion : Apple
> Source|[—> | ||conversion ||T=>| ||\ reer | || component ||C—>
@ Manager ( component ( component Mixer (ASC driver) >>
- Audio
Application hardware
11 kHz Decompressed 22 kHz 22 kHz
compressed audio samples audio samples decompressed
sound sound
'snd ' resource

The components in a component chain may vary, depending both on the format of the
audio data sent to the Sound Manager by an application and on the capabilities of

the current sound output device. The chain shown in Figure 5-1 is necessary to handle
the compressed 11 kHz sound because the Apple Sound Chip can handle only 22 kHz
noncompressed sampled-sound data. Other sound output devices may be able to do
more processing internally, thereby reducing the amount of processing required by the
sound component chain. For instance, a DSP-based sound card might be capable of
converting sample rates itself. In that case, the Sound Manager would not install the rate
conversion component into the sound component chain. The resulting sound component
chain is shown in Figure 5-2.

Figure 5-2 A component chain for audio hardware that can convert sample rates

i Output device
|:> Sound |:> I:; Expansion Apple )
Manager Source ( |component I:>( Mixer — (CDOSnIldeRSQ:) —
Application Audio
hardware

The principal function of a sound component is to transfer data from the source down
the chain of sound components while performing some specific modification on the data.
It does this by getting a block of data from its source component (the component that
immediately precedes it in the chain). The sound component then processes that data
and stores it in the component’s own private buffers. The next component can then get
that processed data, perform its own modifications, and pass the data to the next
component in the chain. Eventually, the audio data flows through the Apple Mixer
(described in the next section) to the sound output device component, which sends the
data to the current sound output device.

About Sound Components 5-5

sjuauodwo) punos m



CHAPTER 5

Sound Components

Notice that only the sound output device component communicates directly with the
sound output hardware. This insulates all other sound components from having to know
anything about the current sound output device. Rather, those components (sometimes
called utility components) can simply operate on a stream of bytes.

The Sound Manager provides sound output device components for all sound output
devices built into Macintosh computers. It also provides utility components for many
typical kinds of audio data manipulation, including

= sample rate conversion

» audio data expansion

= sample size conversion

= format conversion (for example, converting offset binary data to two’s complement)

Currently, you can write sound output device components to handle communication
with your own sound output devices. You can also write utility components to handle
custom compression and expansion schemes. You cannot currently write any other kind
of utility component.

The Apple Mixer

As you’'ve seen, most sound components take a single source of audio data and modify
it in some way, thereby producing a single output stream of audio data. There is one
special sound component, known as the Apple Mixer component (or, more briefly, the
Apple Mixer), that is able to handle more than one input data stream. Its function is
precisely to mix together all open channels of sound data into a single output stream,
as shown in Figure 5-3.

Figure 5-3 Mixing multiple channels of sound

Application 1

Application 2

Rate H
— [—>|Source || >| ||conversion )

Expansion
[_>|Source |:>( o
. Rate Output device
Sound Expansion ] Apple
Manager [=)| Source :>( component I:>( ggm:)eorrfg)rn ':>[ Mixer DI:> (CAOSnépgrr;Sgrt)

component |<] D)

Audio
hardware

5-6

About Sound Components



CHAPTER 5

Sound Components

The Apple Mixer has a more general function also, namely to construct the sound
component chain required to process audio data from a given sound source into a format
that can be handled by a particular sound output device. The Apple Mixer always feeds
its output directly to the sound output device component, which sends the data to its
associated audio hardware. After creating the component chain, the Apple Mixer assigns
it a source 1D, a 4-byte token that provides a unique reference to the component chain.
The Apple Mixer is actually created by the sound output device component, when that
component calls the Sound Manager’s OpenM xer SoundConponent function.

In addition to creating sound component chains and mixing their data, the Apple Mixer
can control the volume and stereo panning of a particular sound channel. Some sound
output devices might be able to provide these capabilities as well. Indeed, some sound
output devices might even be able to mix the data in multiple sound channels. In those
cases, the sound output device component can call the QpenM xer SoundConponent
function once for each sound source it wants to manage. The result is a separate instance
of the Apple Mixer for each sound source, as shown in Figure 5-4.

Figure 5-4 A sound output device component that can mix sound channels
Apple
[ >|Sourcel|| >( Mixer 1
Output device
e Sound Apple
Application 1 —>|Source|| > ; )| || component ||[——>
PP Manager Mixer (DSP driver)
Audio
Rate hardware
. Apple
—> [—>|Source I:>( conversion |:>( T
component

Application 2

The sound output device component can instruct each instance of the Apple Mixer to
pass all the sound data through unprocessed, thereby allowing the output device to
perform the necessary processing and mixing. In this case, the Apple Mixer consumes
virtually no processing time. The Apple Mixer must, however, still be present to set up
the sound component chain and to assign a source ID to each sound source.

The Data Stream

A sound component is a standalone code resource that performs some signal processing
function or communicates with a sound output device. All sound components have a
standard programming interface and local storage that allows them to be connected

About Sound Components 5-7

sjuauodwo) punos m



CHAPTER 5

Sound Components

together in series to perform a wide range of audio data processing tasks. As previously
indicated, all sound components (except for mixer components and some sound output
device components) accept a single stream of input data and produce a single stream of
output data.

The Sound Manager sends your sound component information about its input stream by
passing it the address of a sound component data record, defined by the
SoundConponent Dat a data type.

typedef struct {

| ong fl ags; /*sound conponent flags*/
OSType format ; /*data format*/

short nunthannel s; /*nunber of channels in data*/
short sanpl eSi ze; /*size of a sanple*/

Unsi gnedFi xed sanpl eRat e; /*sanpl e rate*/

| ong sanpl eCount ; [ *nunber of sanples in buffer*/
Byt e *puf fer; /*1 ocation of data*/

| ong reserved; /*reserved*/

} SoundConponent Dat a, * SoundConponent Dat aPtr

The buf f er field points to the buffer of input data. The other fields define the format of
that data. For example, the sample size and rate are passed in the sanpl eSi ze and
sanpl eRat e fields, respectively. A utility component should modify the data in that
buffer and then write the processed data into an internal buffer. Then it should fill out

a sound component data record and pass its address back to the Sound Manager, which
will then pass it on to the next sound component in the chain. Eventually, the audio data
passes through all utility components in the chain, through the Apple Mixer and the
sound output device component, down to the audio hardware.

Writing a Sound Component

5-8

A sound component is a component that works with the Sound Manager to manipulate
audio data or to communicate with a sound output device. Because a sound component
is a component, it must be able to respond to standard selectors sent by the Component
Manager. In addition, a sound component must handle other selectors specific to sound
components. This section describes how to write a sound component.

Creating a Sound Component

A sound component is a component. It contains a number of resources, including icons,
strings, and the standard component resource (a resource of type ' t hng' ) required of
any Component Manager component. In addition, a sound component must contain
code to handle required selectors passed to it by the Component Manager as well as
selectors specific to the sound component.

Writing a Sound Component



CHAPTER 5

Sound Components

Note

For complete details on components and their structure, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. This
section provides specific information about sound components. O

The component resource binds together all the relevant resources contained in a
component; its structure is defined by the Conponent Resour ce data type.

struct Conponent Resource {
Conmponent Descri ption cd;

Resour ceSpec conmponent ;

Resour ceSpec conponent Nane
Resour ceSpec conmponent I nf o;
Resour ceSpec conmponent | con;

}s

The conponent field specifies the resource type and resource ID of the component’s
executable code. By convention, this field should be set to the value
kSoundConponent CodeType:

#def i ne kSoundConponent CodeType "sift' /*sound conponent code type*/

(You can, however, specify some other resource type if you wish.) The resource ID can be
any integer greater than or equal to 128. See the following section for further information
about this code resource. The Resour ceSpec data type has this structure:

typedef struct {
OSType resType;
short resl D
} ResourceSpec;

The conponent Nane field specifies the resource type and resource ID of the resource
that contains the component’s name. Usually the name is contained in a resource of type
' STR ' . This string should be as short as possible.

The conponent | nf o field specifies the resource type and resource ID of the resource
that contains a description of the component. Usually the description is contained in a
resource of type' STR ' .

sjuauodwo) punos m

The conponent | con field specifies the resource type and resource ID of the resource
that contains an icon for the component. Usually the icon is contained in a resource of
type' | CON .

The cd field of the Conponent Resour ce structure is a component description record,
which contains additional information about the component. A component description
record is defined by the Conponent Descr i pt i on data type.

typedef struct {
OSType conponent Type;
OSType conponent SubType;

Writing a Sound Component 5-9



#def |
#def i
#def i
#def |
#def i

#def i
#def i
#def i

5-10

ne
ne
ne
ne
ne

ne
ne
ne

CHAPTER 5

Sound Components

OSType conponent Manuf act ur er;
unsi gned | ong conmponent Fl ags;
unsi gned | ong conponent Fl agsMask;

} Conponent Descri pti on;

For sound components, the conponent Type field must be set to a value recognized
by the Sound Manager. Currently, there are five available component types for
sound components:

kSoundConponent Type "sift' /*utility conponent*/

kM xer Type "'m xr' /*m xer conponent*/

kSoundHar dwar eType ' sdev' /*sound out put device conponent*/

kSoundConpr essor 'sconi / *conpr essi on conponent */

kSoundDeconpr essor ' sdec’ / *deconpr essi on conponent */
In addition, the component SubType field must be set to a value that indicates the type
of audio services your component provides. For example, the Apple-supplied sound
output device components have these subtypes:

kd assi cSubType 'cl as' /*Cl assi ¢ hardwar e*/

kASCSubType "asc ' /*ASC devi ce*/

kDSPSubType "dsp ' /*DSP devi ce*/

If you add your own sound output device component, you should define some other
subtype.

Note

Apple Computer, Inc., reserves for its own use all types and subtypes
composed solely of lowercase letters. O

You can assign any value you like to the conponent Manuf act ur er field; typically you
put the signature of your sound component in this field.

The conponent Fl ags field of the component description for a sound component
contains bit flags that encode information about the component. You can use this field
to specify that the Component Manager should send your component the
kConponent Regi st er Sel ect selector.

enum {
cnpWant sRegi st er Message = 1lL<<31 /*send regi ster request*/
b

This bit is most useful for sound output device components, which might need to test for
the presence of the appropriate hardware to determine whether to register with the
Component Manager. When your component gets the kConponent Regi st er Sel ect
selector at system startup time, it should make sure that all the necessary hardware is
available. If it isn’t available, your component shouldn’t register. See “Registering and
Opening a Sound Component” beginning on page 5-16 for more information on opening
and registering your sound component.

Writing a Sound Component



CHAPTER 5

Sound Components

You also use the conponent Fl ags field of the component description to define the
characteristics of your component. For example, you can set a bit in that field to indicate
that your sound component can accept stereo sound data. See “Specifying Sound
Component Capabilities” on page 5-11 for more details on specifying the features of your
sound component.

You should set the conponent Fl agsMask field to 0.

Listing 5-1 shows, in Rez format, a component resource for a sample sound output
device component named SurfBoard.

Listing 5-1 Rez input for a component resource

#def i ne kSurf Boardl D 128

#def i ne kSurf Boar dSubType ' SURF'

resource 'thng' (kSurfBoardl D, purgeable) {
'sdev', / *conponent type*/
kSur f Boar dSubType, / *conmponent subtype*/
"appl', / *conmponent nmanuf act urer*/
cnpWant sRegi st er Message, / *conponent fl ags*/
0, [ *component fl ags mask*/
"sift', / *conponent code resource type*/
kSur f Boar dI D, / *conponent code resource | D*/
"STR ', / *component name resource type*/
kSur f Boar dI D, / *conponent nane resource | D*/
"STR ', /*conponent info resource type*/
kSur f Boar dI D+1, /*conmponent info resource |D*/
"I CON , /*conponent icon resource type*/
kSur f Boar dl D / *conponent icon resource | D*/

1

Your sound component is contained in a resource file. You can assign any type you wish
to be the file creator, but the type of the file must be ' t hng' . If the sound component
contains a' BNDL' resource, then the file’s bundle bit must be set.

Specifying Sound Component Capabilities

As mentioned in the previous section, the conponent Fl ags field of a component
description for a sound component contains bit flags that encode information about the
component. The high-order 8 bits of that field are reserved for use by the Component
Manager. In those 8 bits, you can set the cmrpWant sRegi st er Message bit to indicate
that the Component Manger should call your component during registration.

The low-order 24 bits of the conponent Fl ags field of a component description are
used by the Sound Manager. You'll set some of these bits to define the capabilities of

Writing a Sound Component 5-11

sjuauodwo) punos m



pascal

5-12

CHAPTER 5

Sound Components

your sound component. You can use the following constants to set specific bits in the
conponent Fl ags field.

#def i ne k8Bi t Rawl n (1 << 0) /*data fl ags*/
#defi ne k8Bit Twosln (1 << 1)

#define k16Bitln (1 << 2)

#define kStereoln (1 << 3)

#def i ne k8Bi t RawQut (1 << 8)

#def i ne k8Bit TwosQut (1 << 9)

#defi ne k16Bit Qut (1 << 10)

#defi ne kStereoCQut (1 << 11)

#def i ne kReverse (1 << 16) /*action flags*/
#def i ne kRat eConvert (1 << 17)

#defi ne kCreat eSoundSource (1 << 18)

#defi ne kH ghQual ity (1 << 22) /*performance flags*/
#def i ne kReal Ti ne (1 << 23)

These constants define four types of information about your sound component: the kind
of audio data it can accept as input, the kind of audio data it can produce as output, the
actions it can perform on the audio data it's passed, and the performance of your sound
component. For example, a utility component that accepts only monaural 8-bit, offset
binary data as input and converts it to 16-bit two’s complement data might have the
value 0x00000801 (that is, k8Bi t Raw n | k16Bi t Qut )in the conponent Fl ags field.

The Sound Manager also defines a number of masks that you can use to select ranges of
bits within the conponent Fl ags field. See “Sound Component Features Flags” on
page 5-26 for complete information on the defined bit constants and masks.

Dispatching to Sound Component-Defined Routines

As explained earlier, the code stored in the sound component should be contained in a
resource of type kSoundConponent CodeType. The Component Manager expects the
entry point in this resource to be a function with this format:

Conponent Resul t MySur f Di spat ch (Conponent Par anet ers *par ans,

SoundConponent d obal sPtr gl obal s);

The Component Manager calls your sound component by passing MySur f Di spat ch a
selector in the par anms- >what field; MySur f Di spat ch must interpret the selector and
possibly dispatch to some other routine in the resource. Your sound component must be
able to handle the required selectors, defined by these constants:

#def i ne kConponent OpenSel ect -1
#def i ne kConponent O oseSel ect -2
#def i ne kConponent CanDoSel ect -3
#defi ne kConponent Ver si onSel ect -4

Writing a Sound Component



CHAPTER 5

Sound Components

#def i ne kConponent Regi st er Sel ect -5
#def i ne kConponent Tar get Sel ect -6
#defi ne kConponent Unr egi st er Sel ect -7
Note

For complete details on required component selectors, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. O

In addition, your sound component must be able to respond to component-specific
selectors. Some of these selectors must be handled by your component; if your
component doesn’t implement one of these selectors, it should return the
badConmponent Sel ect or result code. Other selectors should be delegated up the
component chain. This allows the Sound Manager to query a particular component
chain by passing a selector to the first component in the chain. If your component does
not implement a delegable selector, it should call the Component Manager routine

Del egat eConmponent Cal | to delegate the selector to its source component. If your
sound component does implement a particular delegable selector, it should perform the
operation associated with it. The Sound Manager defines a constant to designate the
delegable selectors.

/*first selector that can be del egated up the chain*/
#def i ne kDel egat edSoundConponent Sel ect or s 0x0100

The Sound Manager can pass these selectors to your sound component:

enum {

/*the follow ng calls cannot be del egat ed*/
kSoundComponent | ni t Qut put Devi ceSel ect =1,
kSoundConponent Set Sour ceSel ect
kSoundConponent Get Sour ceSel ect
kSoundConmponent Get Sour ceDat aSel ect,
kSoundConponent Set Qut put Sel ect

/*the followi ng calls can be del egat ed*/
kSoundConmponent AddSour ceSel ect = kDel egat edSoundConponent Sel ectors + 1,
kSoundConponent RenmoveSour ceSel ect,
kSoundConponent Get | nf 0Sel ect,

kSoundComponent Set | nf 0Sel ect,

kSoundConponent St art Sour ceSel ect
kSoundConponent St opSour ceSel ect
kSoundConponent PauseSour ceSel ect,
kSoundConponent Pl aySour ceBuf f er Sel ect

You can respond to these selectors by calling the Component Manager routine

Cal | Conponent Funct i onW t hSt or age or by delegating the selector to your
component’s source component. Listing 5-2 illustrates how to define a sound component
entry point routine.

Writing a Sound Component 5-13

sjuauodwo) punos m



CHAPTER 5

Sound Components

Listing 5-2 Handling Component Manager selectors
pascal Conponent Result MySurf D spatch (Conmponent Par anet ers *parans,
SoundConponent d obal sPtr gl obal s)
{
Component Rout i ne myRout i ne;
Conponent Resul t nmyResul t;
/*Get address of conponent-defined routine.*/
nyRouti ne = MyCGet Conponent Rout i ne( par ans- >what ) ;
if (myRoutine == nil) /*sel ector not inplenmented*/
nmyResul t = badConponent Sel ect or;
else if (nyRoutine == kDel egateCall) /*sel ector shoul d be del egat ed*/
myResul t = Del egat eConponent Cal | ( parans, gl obal s->sour ceConponent);
el se
nyResult = Cal | Component Functi onWt hSt or age( (Handl e) gl obal s, parans,
( Conponent Rout i ne) myRouti ne);
return (nyResult);
}
As you can see, the MySur f Di spat ch function defined in Listing 5-2 simply retrieves
the address of the appropriate component-defined routine, as determined by the
par ans- >what field. If the routine MyGet Conponent Rout i ne returns ni | , then
MySur f Di spat ch itself returns the badConponent Sel ect or result code. Otherwise,
if the selector should be delegated, MySur f Di spat ch calls Del egat eConponent Cal |
to do so. Finally, if the selector hasn’t yet been handled, the appropriate
component-defined routine is executed via Cal | Conponent Functi onW t hSt or age.
Listing 5-3 defines the function MyGet Conponent Rout i ne.
Listing 5-3 Finding the address of a component-defined routine
Conponent Rout i ne MyGet Conponent Routi ne (short sel ector)
{
voi d *nyRout i ne;
if (selector < 0)
switch (selector) /*requi red conponent sel ectors*/
{
case kComponent Regi st er Sel ect :
nyRout i ne = MyRegi st er SoundConponent ;
br eak;
case kConponent Ver si onSel ect :
5-14 Writing a Sound Component



CHAPTER 5

Sound Components

nmyRout i ne = MySoundConponent Ver si on;
br eak;

case kComponent CanDoSel ect :
nmyRout i ne = MySoundConponent CanDo;
br eak;

case kComponent Cl oseSel ect :
nmyRout i ne = Myd oseSoundConponent ;
br eak;

case kComponent OpenSel ect:
nmyRout i ne = MyQpenSoundConponent ;
br eak;

defaul t:
nyRoutine = nil; /*unknown sel ector, so fail*/
br eak;

}

else if (selector < kDel egat edSoundConponent Sel ect or s)

/*sel ectors that can't be del egated*/

switch (sel ector)

{
case kSoundConponent | ni t Qut put Devi ceSel ect :
nyRouti ne = MySoundConponent I ni t Qut put Devi ce;
br eak;
case kSoundComponent Set Sour ceSel ect :
case kSoundConponent Get Sour ceSel ect :
case kSoundConponent Get Sour ceDat aSel ect :
case kSoundConponent Set Qut put Sel ect :
def aul t:
myRoutine = nil; / *unknown sel ector, so fail*/
br eak;
}
el se /*sel ectors that can be del egat ed*/
switch (selector)
{

case kSoundConponent St art Sour ceSel ect :
nyRouti ne = MySoundConponent St art Sour ce;
br eak;

case kSoundConponent Pl aySour ceBuf f er Sel ect :
nmyRout i ne = MySoundConponent Pl aySour ceBuf f er;
br eak;

case kSoundConponent Get | nf oSel ect :
nyRouti ne = MySoundConponent Get | nf o;
br eak;

Writing a Sound Component

5-15

sjuauodwo) punos m



5-16

CHAPTER 5

Sound Components

case kSoundConponent Set | nf 0Sel ect :
myRout i ne = MySoundConponent Set | nf o;
br eak;
case kSoundConponent AddSour ceSel ect :
case kSoundConponent RenbveSour ceSel ect :
case kSoundComponent St opSour ceSel ect :
case kSoundConponent PauseSour ceSel ect :
defaul t:
nyRouti ne = kDel egateCal | ; /*del egate it*/
br eak;

return (myRoutine);

}

In all likelihood, your component is loaded into the system heap, although it might be
loaded into an application heap if memory is low in the system heap. You can call the
Component Manager function Get Conponent | nst anceA5 to determine the A5 value
of the current application. If this function returns 0, your component is in the system
heap; otherwise, your component is in an application’s heap. Its location might affect
how you allocate memory. For example, calling the MoveHHi routine on handles in the
system heap has no result. Thus, you should either call the Reser veMenBys routine
before calling NewHand| eSys (so that the handle is allocated as low in the system heap
as possible) or else just allocate a nonrelocatable block by calling the NewPt r Sys routine.

If you need to access resources that are stored in your sound component, you can use
OpenConponent ResFi | e and C oseConponent ResFi | e. OpenConponent ResFi | e
requires the Conponent | nst ance parameter supplied to your routine. You should not
call Resource Manager routines such as OpenResFi | e or Cl oseResFi | e.

WARNING

Do not leave any resource files open when your sound component is
closed. Their maps will be left in the subheap when the subheap is freed,
causing the Resource Manager to crash. a

The following sections illustrate how to define some of the sound component functions.

Registering and Opening a Sound Component

The Component Manager sends your component the kConponent Regi st er Sel ect
selector, usually at system startup time, to allow your component to determine whether
it wants to register itself with the Component Manager. Utility components should
always register themselves, so that the capabilities they provide will be available when
needed. Sound output device components, however, should first check to see whether
any necessary hardware is available before registering themselves. If the hardware they
drive isn’t available, there is no point in registering with the Component Manager.

Writing a Sound Component



CHAPTER 5

Sound Components

The Component Manager sends your component the kConponent QpenSel ect selector
whenever the Sound Manager wants to open a connection to your component. In
general, a sound output device component has only one connection made to it. A utility
component, however, might have several instances, if the capabilities it provides are
needed by more than one sound component chain. Your component should do as little as
possible when opening up. It should allocate whatever global storage it needs to manage
the connection and call Set Conponent | nst anceSt or age so that the Component
Manager can remember the location of that storage and pass it to all other
component-defined routines.

As noted in the previous section, your component is probably loaded into the system
heap. If so, you should also allocate any global storage in the system heap. If memory
is tight, however, your component might be loaded into an application’s heap (namely,
the heap of the first application that plays sound). In that case, you should allocate any
global variables you need in that heap. The Sound Manager ensures that other
applications will not try to play sound while the component is in this application heap.

IMPORTANT

Your component is always sent the kConponent CpenSel ect
component selector before it is sent the kConponent Regi st er Sel ect
selector. As a result, you should not attempt to initialize or configure any
associated hardware in response to kConponent OpenSel ect. a

The Sound Manager sends the kSoundConponent | ni t Cut put Devi ceSel ect
selector specifically to allow a sound output device component to perform any
hardware-related operations. Your component should initialize the hardware to some
reasonable default values, create the Apple Mixer, and allocate any other memory that
might be needed. Listing 5-4 shows one way to respond to the

kSoundConponent | ni t Qut put Devi ceSel ect selector.

Listing 5-4 Initializing an output device

static pascal Conponent Result MySoundConponent | nit Qut put Devi ce
(SoundConponent d obal sPtr gl obals, |ong actions)
{
#pragma unused (actions)
Conponent Resul t nmyResul t;

/*Make sure we got our gl obals.*/
if (globals->hwd obals == nil)
return (not EnoughHar dwar eErr);

/*Set up the hardware.*/
myResul t = MySet upHar dwar e( gl obal s);
if (nyResult != noErr)

return (nyResult);

Writing a Sound Component 5-17

sjuauodwo) punos m



CHAPTER 5

Sound Components

/*Create an Apple M xer.*/
nmyResult = OQpenM xer SoundConponent ( &gl obal s- >t hi sConp, O,
&gl obal s- >sour ceConponent) ;

return (nyResult);
}

The MySoundConponent | ni t Qut put Devi ce function defined in Listing 5-4 simply
retrieves the location of its global variables, configures the hardware by calling the

My Set upHar dwar e function, and then calls QpenM xer SoundConponent to create an
instance of the Apple Mixer.

Finding and Changing Component Capabilities

All sound components take a stream of input data and produce a (usually different)
stream of output data. The Sound Manager needs to know what operations your
component can perform, so that it knows what other sound components might need to
be linked together to play a particular sound on the available sound output device. It
calls your component’s SoundConponent Get | nf o and SoundConponent Set | nf o
functions to get and set information about the capabilities and current settings of your
sound component.

To specify the kind of information it wants to get or set, the Sound Manager passes your
component a sound component information selector. If your component does not
support a particular selector, if should pass the selector to the specified sound source.

If your component does support the selector, it should either return the desired
information directly or alter its settings as requested.

The sound component information selectors can specify any of a large number of audio
capabilities or component settings. For example, the selector si Rat eMul ti pli er is
passed to get or set the current output sample rate multiplier value.

Note

The Sound Manager uses many of the sound input device information
selectors defined by the Sound Input Manager for communicating with
sound input devices. See “Sound Input Manager” in this book for a
description of the sound input device information selectors. A complete
list of all sound component information selectors is provided in “Sound
Component Information Selectors” beginning on page 5-22. O

Your component’s SoundConponent Get | nf o function has the following declaration:

pascal Component Result SoundConponent Get | nfo (Component | nstance ti,
SoundSour ce sourcel D, OSType sel ector,
void *infoPtr);

The sound component information selector is passed in the sel ect or parameter.
The sound source is identified by the source ID passed in the sour cel D parameter.

5-18 Writing a Sound Component



CHAPTER 5

Sound Components

The i nf oPt r parameter specifies the location in memory of the information returned
by SoundConponent Get | nf o. If the information to be returned occupies four bytes
or fewer, you can simply return the information in the location pointed to by that
parameter. Otherwise, you should pass back in the i nf oPt r parameter a pointer to a
record of type Soundl nf oLi st, which contains an integer and a handle to an array of
data items. In the second case, you’ll need to allocate memory to hold the information
you need to pass back. Listing 5-5 defines a component’s SoundConponent Cet | nf o
routine. It returns information to the Sound Manager about its capabilities and

current settings.

Listing 5-5 Getting sound component information

static pascal Conponent Result MySoundConponent Get | nfo

( SoundConponent d obal sPtr gl obal s, SoundSour ce sourcel D,
OSType sel ector, void *infoPtr)

{
Handl eLi st Ptr listPtr;
short *sp, i;
Unsi gnedFi xed *| p;
Handl e h;
Har dwar ed obal sPt r hwd obal s = gl obal s- >hwd obal s;
Conponent Resul t result = noErr;

/ *Make sure we got our global variables.*/
if (hwd obals == nil)

return (not EnoughHar dwar eErr) ;

switch (sel ector)

{

case si Sanpl eSi ze: /*return current sanple size*/
*((short *) infoPtr) = hwd obal s->sanpl eSi ze;
br eak;

case si Sanpl eSi zeAvai | abl e: /*return sanple sizes avail abl e*/
h = NewHandl e(si zeof (short) * kSanpl eSi zesCount);
if (h==nil)

return (Mentrror());

l[istPtr = (Handl eListPtr) infoPtr;

listPtr->count = O; /*num sanple sizes in handl e*/
listPtr->handl e = h; /*handl e to be returned*/
sp = (short *) *h; /*store sanple sizes in handl e*/

Writing a Sound Component 5-19

sjuauodwo) punos m



5-20

CHAPTER 5

Sound Components

for (i = 0; i < kSanpl eSi zesCount; ++i)
i f (hwd obal s->sanpl eSi zesActive[i])

{
[istPtr->count ++;
*sp++ = hwd obal s->sanpl eSi zes[i];
}
br eak;
case si Sanpl eRat e: /*return current sanple rate*/
*((Fixed *) infoPtr) = hwd obal s->sanpl eRat e;
br eak;
case si Sanpl eRat eAvai | abl e: /*return sanple rates avail abl e*/
h = NewHandl e(si zeof (Unsi gnedFi xed) * kSanpl eRat esCount);
if (h==mnil)

return (MenError());

listPtr = (Handl eListPtr) infoPtr;
listPtr->count = O; /*num sanple rates in handl e*/
[istPtr->handl e = h; /*handl e to be returned*/

I p = (Unsi gnedFi xed *) *h;

/*If the hardware can support a range of sanple rate val ues,
the Iist count should be set to 0 and the m ni mum and maxi num
sampl e rate values should be stored in the handle.*/

i f (hwd obal s->support sRat eRange)

{

*| p++ hwd obal s- >sanpl eRat eM n;

*| p++ hwd@ obal s- >sanpl eRat eMax;

/*If the hardware supports a linmted set of sanple rates,
the list count should be set to the nunber of sanple rates
and this list of rates should be stored in the handle. */

el se

{
for (i = 0; i < kSanpl eRat esCount; ++i)

i f (hwd obal s->sanpl eRat esActive[i])
{

[istPtr->count ++;

*| p++ = hwd obal s- >sanpl eRates[i];

Writing a Sound Component



CHAPTER 5

Sound Components

}
}
br eak;
case si Nunber Channel s: /*return current num channel s*/
*((short *) infoPtr) = hwd obal s- >nunChannel s;
br eak;
case si Channel Avai | abl e: /*return channel s avail abl e*/
h = NewHandl e(si zeof (short) * kChannel sCount);
if (h==nil)

return (MenError());

listPtr = (Handl eListPtr) infoPtr;

listPtr->count = O; /*num channel s in handl e*/
listPtr->handle = h; /*handl e to be returned*/
sp = (short *) *h; /*store channel s in handl e*/
for (i = 0; i < kChannel sCount; ++i)

i f (hwd obal s->channel sActive[i])

{

listPtr->count ++;
*sp++ = hwd obal s->channel s[i];

}

br eak;

case si Hardwar eVol une:
*((long *)infoPtr) = hwd obal s->vol une;
br eak;

/*1f you do not handle a selector, delegate it up the chain.*/
defaul t:

result = SoundConponent Get | nf o( gl obal s- >sour ceConponent, sour cel D,

sel ector, infoPtr);
br eak;

}

return (result);

You can define your MySoundConponent Set | nf o routine in an exactly similar fashion.

Writing a Sound Component

sjuauodwo) punos m



CHAPTER 5

Sound Components

Sound Components Reference

Constants

This section describes the constants, data structures, and routines you can use to write a
sound component. It also describes the routines that your sound component should call
in response to a sound component selector. See “Writing a Sound Component” on

page 5-8 for information on creating a component that contains these component-defined
routines.

This section provides details on the constants defined by the Sound Manager for use
with sound components. You'll use these constants to

» determine the kind of information the Sound Manager wants your sound component
to return to it or settings it wants your sound component to change

» define the format of the audio data your sound component is currently producing
» specify the action flags for the SoundConponent Pl ay Sour ceBuf f er function

= specify the format of the data your sound output device component expects to receive

Sound Component Information Selectors

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

5-22

ne
ne
ne
ne
ne
ne
ne
ne
ne

The Sound Manager calls your sound component’s SoundConponent Get | nf o and
SoundConponent Set | nf 0 functions to determine the capabilities of your component
and to change those capabilities. It passes those functions a sound component
information selector in the function’s sel ect or parameter to specify the type of
information it wants to get or set. The available sound component information selectors
are defined by constants.

Note

Most of these selectors can be passed to both
SoundConponent Get | nf 0 and SoundConponent Set | nf 0.
Some of them, however, can be sent to only one or the other. T

si Channel Avai | abl e ' chav' /*nunber of channel s avail abl e*/

si Conpr essi onAvai | abl e 'cmav' /*conpression types avail abl e*/

si Conpr essi onFact or ‘cnfa' /*current conpression factor*/

si Conpr essi onType ' conp' /*current conpression type*/

si Har dwar eMut e "hnut' /*current hardware mute state*/

si Har dwar eVol une "hvol ' /*current hardware vol ume*/

si Har dwar eVol uneSt eps " hst p' /*nunber of hardware vol une steps*/
si HeadphoneMut e "'pmut’ /*current headphone nmute state*/

si HeadphoneVol ume " pvol '’ /*current headphone vol une*/

Sound Components Reference



#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CHAPTER 5

Sound Components

si HeadphoneVol unesSt eps " hdst' /*num of headphone vol une steps*/
si Nunber Channel s ' chan' /*current nunmber of channel s*/
siQuality ' qual’ [*current quality*/

si RateMul tiplier "rmul’ /*current rate multiplier*/

si Sanpl eRat e "srat’ /*current sanple rate*/

si Sanpl eRat eAvai | abl e 'srav’ /*sanpl e rates avail abl e*/

si Sanpl eSi ze 'ssiz' /*current sanple size*/

si Sanpl eSi zeAvai | abl e ' ssav' /*sanpl e sizes avail abl e*/

si Speaker Mut e "snut’ [ *current speaker mnute*/

si Speaker Vol une "svol ' /*current speaker vol une*/

si Vol une "vol u' /*current volume setting*/

Constant descriptions
si Channel Avai | abl e

Get the maximum number of channels this sound component can
manage, as well as the channels themselves. The i nf oPt r
parameter points to a record of type SoundI nf oLi st, which
contains an integer (the number of available channels) and a
handle to an array of integers (which represent the channel
numbers themselves).

si Conpr essi onAvai | abl e

Get the number and list of compression types this sound
component can manage. The i nf oPt r parameter points to a
record of type Sound! nf oLi st , which contains the number of
compression types, followed by a handle that references a list
of compression types, each of type OSType.

si Conpr essi onFact or

Get information about the current compression type. The
i nf oDat a parameter points to a compression information record
(see page 5-32).

si Conpr essi onType

si Har dwar eMut e

Get or set the current compression type. The i nf oPt r parameter
points to a buffer of type OSType, which is the compression type.

Get or set the current mute state of the audio hardware. A value of 0
indicates that the hardware is not muted, and a value of 1 indicates
that the hardware is muted. Not all sound components need to
support this selector; it’s intended for sound output device
components whose associated hardware can be muted.

si Har dwar eVol ume

Get or set the current volume level of all sounds produced on the
sound output device. The i nf oPt r parameter points to a long
integer, where the high-order word represents the right volume
level and the low-order word represents the left volume level. A
volume level is specified by an unsigned 16-bit number: 0x0000
represents silence and 0x0100 represents full volume. (You can use
the constant kFul | Vol une for full volume.) You can specify values

Sound Components Reference 5-23

sjuauodwo) punos m



5-24

CHAPTER 5

Sound Components

larger than 0x0100 to overdrive the volume, although doing so
might result in clipping. This selector applies to the volume of

the output device, whereas the si Vol une selector applies to the
volume of a specific sound channel and its component chain. If

a sound output device supports more than one output port (for
example, both headphones and speakers), the si Har dwar eVol une
selector applies to all those ports.

si Har dwar eVol uneSt eps

si HeadphoneMut e

Get the number of audible volume levels supported by the audio
hardware. If the device supports a range of volume levels (for
example, 0x000 to 0x1000), you should return only the number of
levels that are audible. The Sound Manager uses this information
to handle the volume slider in the Alert Sounds control panel.

Get or set the current mute state of the headphone. A value of 0
indicates that the headphone is not muted, and a value of 1
indicates that the headphone is muted. Not all sound components
need to support this selector; it’s intended for sound output device
components whose associated headphone can be muted.

si HeadphoneVol umne

Get or set the current volume level of all sounds produced on the
headphone. The i nf oPt r parameter points to a long integer, where
the high-order word represents the right volume level and the
low-order word represents the left volume level. A volume level is
specified by an unsigned 16-bit number: 0x0000 represents silence
and 0x0100 represents full volume. (You can use the constant

kFul | Vol urre for full volume.) You can specify values larger than
0x0100 to overdrive the volume, although doing so might result in
clipping. This selector applies to the volume of the headphones.

si HeadphoneVol unesSt eps

Get the number of audible volume levels supported by the
headphones. If the headphones support a range of volume levels
(for example, 0x000 to 0x1000), you should return only the number
of levels that are audible.

si Nunber Channel s

siQality

Get or set the current number of audio channels currently being
managed by the sound component. The i nf oPt r parameter points
to an integer, which is the number of channels. For example, for
stereo sounds, this integer should be 2.

Get or set the current quality setting for the sound component.
The i nf oPt r parameter points to a 32-bit value, which typically
determines how much processing should be applied to the audio
data stream.

siRateMul tiplier

Get or set the current rate multiplier for the sound component. The
i nf oPt r parameter points to a buffer of type Unsi gnedFi xed,
which is the multiplier to be applied to the playback rate of the
sound, independent of the base sample rate of the sound. For
example, if the current rate multiplier is 2.0, the sound is played

Sound Components Reference



CHAPTER 5

Sound Components

si Sanpl eRat e

back at twice the speed specified in the sanpl eRat e field of the
sound component data record.

Get or set the current sample rate of the data being output by the
sound component. The i nf oPt r parameter points to a buffer of
type Unsi gnedFi xed, which is the sample rate.

si Sanpl eRat eAvai | abl e

si Sanpl eSi ze

Get the range of sample rates this sound component can handle.
The i nf oPt r parameter points to a record of type

SoundlI nf oLi st, which is the number of sample rates the
component supports, followed by a handle to a list of sample rates,
each of type Unsi gnedFi xed. The sample rates can be in the range
0 to 65535.65535. If the number of sample rates is 0, then the first
two sample rates in the list define the lowest and highest values in
a continuous range of sample rates.

Get or set the current sample size of the audio data being output by
the sound component. The i nf oPt r parameter points to an integer,
which is the sample size in bits.

si Sanpl eSi zeAvai | abl e

si Speaker Mut e

si Speaker Vol une

si Vol une

Get the range of sample sizes this sound component can handle.
The i nf oPt r parameter points to a record of type

SoundlI nf oLi st, which is the number of sample sizes the sound
component supports, followed by a handle. The handle references
a list of sample sizes, each of type | nt eger. Sample sizes are
specified in bits.

Get or set the current mute state of the speakers. A value of 0
indicates that the speakers are not muted, and a value of 1 indicates
that the speakers are muted. Not all sound components need to
support this selector; it’s intended for sound output device
components whose associated speakers can be muted.

Get or set the current volume level of all sounds produced on the
speakers. The i nf oPt r parameter points to a long integer, where
the high-order word represents the right volume level and the
low-order word represents the left volume level. A volume level is
specified by an unsigned 16-bit number: 0x0000 represents silence
and 0x0100 represents full volume. (You can use the constant

kFul | Vol une for full volume.) You can specify values larger than
0x0100 to overdrive the volume, although doing so might result in
clipping. This selector applies to the volume of the speakers.

Get or set the current volume level of the sound component. The

i nf oPt r parameter points to a long integer, where the high-order
word represents the right volume level and the low-order word
represents the left volume level. A volume level is specified by an
unsigned 16-bit number: 0x0000 represents silence and 0x0100
represents full volume. (You can use the constant kFul | Vol une for
full volume.) You can specify values larger than 0x0100 to overdrive
the volume, although doing so might result in clipping. This
selector applies to the volume of a specific sound channel and its

Sound Components Reference 5-25

sjuauodwo) punos m



CHAPTER 5

Sound Components

component chain, while the si Har dwar eVol une selector applies
to the volume of the output device.

Audio Data Types

You can use the following constants to define the format of the audio data your sound
component is currently producing. You can also define additional data types to denote
your own compression schemes. You pass these constants in the f or mat field of a sound
component data record.

#define kO fsetBi nary "raw '
#defi ne kTwosConpl enment "t wos'
#def i ne KMACE3Conpr essi on " MAC3'
#defi ne kMACEG6Conpr essi on " MACG'

Constant descriptions

KOf f set Bi nary  The data is noncompressed samples in offset binary format (that is,
values range from 0 to 255).

k Twos Conpl enent
The data is noncompressed samples in two’s complement format
(that is, values range from —128 to 128).

kMACE3Conpr essi on
The data is compressed using MACE 3:1 compression.

kMACE6Conpr essi on
The data is compressed using MACE 6:1 compression.

Sound Component Features Flags

5-26

You can use the following constants to define features of your sound component. You
use some combination of these constants to set bits in the conponent Fl ags field of a
component description record, which is contained ina' t hng' resource. These bits
represent the kind of data your component can receive as input, the kind of data your
component can produce as output, the operations your component can perform, and the
performance of your component.

#def i ne k8Bit Rawl n (1 << 0) /*data flags*/
#define k8Bit Twosln (1 << 1)

#define k16Bitln (1 << 2)

#define kStereoln (1 << 3)

#def i ne k8Bi t RawQut (1 << 8)

#def i ne k8Bit TwosQut (1 << 9)

#defi ne k16Bit Qut (1 << 10)

#defi ne kSt ereoCQut (1 << 11)

#def i ne kReverse (1 << 16) /*action flags*/
#def i ne kRat eConvert (1 << 17)

Sound Components Reference



CHAPTER 5

Sound Components

#def i ne kCreat eSoundSource (1 << 18)
#define kHi ghQuality (1 << 22) /*performance fl ags*/
#def i ne kReal Ti ne (1 << 23)

Constant descriptions

k8Bi t Rawi n The component can accept 8 bit offset binary data as input.

k8Bi t Twosl n The component can accept 8 bit two’s complement data as input.

k16BitIn The component can accept 16 bit data as input. 16 bit data is always
in two’s complement format.

kStereoln The component can accept stereo data as input.

k8Bi t RawQut The component can produce 8 bit offset binary data as output.

k8Bi t TwosQut The component can produce 8 bit two’s complement data as output.

k16Bit Qut The component can produce 16 bit data as output. 16 bit data is
always in two’s complement format.

kSt er eoCut The component can produce stereo data as output.

kRever se The component can accept reversed audio data.

kRat eConver t The component can convert sample rates.

kCr eat eSoundSour ce
The component can create sound sources.

kH ghQual ity The component can produce high quality output.
kReal Ti ne The component can operate in real time.

Action Flags

You can use constants to specify the action flags in the act i ons parameter of the
SoundConponent Pl aySour ceBuf f er function. See page 5-49 for information about

this function.
#def i ne kSour cePaused (1 << 0)
#def i ne kPassThrough (1 << 16)

#def i ne kNoSoundConponent Chai n (1 << 17)

Constant descriptions

kSour cePaused If this bit is set, the component chain is configured to play the
specified sound but the playback is initially paused. In this case,
your SoundConponent St ar t Sour ce function must be called to
begin playback. If this bit is clear, the playback begins immediately
once the component chain is set up and configured.

kPassThr ough If this bit is set, the Sound Manager passes all data through to the
sound output device component unmodified. A sound output
device component that can handle any sample rate and sound
format described in a sound parameter block should set this bit.

kNoSoundComnponent Chai n
If this bit is set, the Sound Manager does not construct a component
chain for processing the sound data.

sjuauodwo) punos m

Sound Components Reference 5-27



CHAPTER 5

Sound Components

Data Format Flags

#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

5-28

ne
ne
ne
ne

ne
ne
ne
ne

You can use constants to set or clear flag bits in the out put FI ags parameter passed to
the OpenM xer SoundConponent routine. These flags specify the format of the data
your sound output device component expects to receive. See page 5-33 for information
about the OQpenM xer SoundConponent function.

IMPORTANT

Most of these flags are ignored unless the kNoM xi ng flag is set,
because a sound output device component cannot perform data
modifications such as sample rate conversion or sample size conversion
unless it is also able to mix sound sources. a

kNoM Xxi ng (1 << 0) /*don't nix sources*/
kNoSanpl eRat eConversion (1 << 1) /*don't convert sanple rate*/
kNoSampl eSi zeConversion (1 << 2) /*don't convert sanple size*/
kNoSanpl eFor mat Conver si on \

(1 << 3) /*don't convert sanple formt*/
kNoChannel Conver si on (1 << 4) /*don't convert stereo/ mono*/
kNoDeconpr essi on (1 << 5) /*don't deconpress*/
kNoVol uneConver si on (1 << 6) /*don't apply vol unme*/
kNoReal ti meProcessi ng (1 << 7) /*don't run at interrupt tinme*/

Constant descriptions
kNoM xi ng If this bit is set, the Apple Mixer does not mix audio data sources.

kNoSanpl eRat eConver si on
If this bit is set, the sound component chain does not perform

sample rate conversion (for example, converting 11 kHz data to
22 kHz data).

kNoSanpl eSi zeConver si on
If this bit is set, the sound component chain does not perform
sample size conversion (for example, converting 8-bit data to
16-bit data).

kNoSanpl eFor mat Conver si on
If this bit is set, the sound component chain does not convert
between sample formats (for example, converting from two’s
complement data to offset binary data). Most sound output devices
on Macintosh computers accept only 8-bit offset binary data, which
is therefore the default type of data produced by the Apple Mixer.
If your output device can handle either offset binary or two’s
complement data, you should set this flag. Note that 16-bit data
is always in two’s complement format.

kNoChannel Conver si on
If this bit is set, the sound component chain does not convert
channels (for example, converting monophonic channels to stereo
or stereo channels to monophonic).

kNoDeconpr essi on
If this bit is set, the sound component chain does not decompress

Sound Components Reference



CHAPTER 5

Sound Components

audio data. If your output device can decompress data, you should
set this flag.

kNoVol uneConver si on
If this bit is set, the sound component chain does not convert
volumes.

kNoReal ti meProcessi ng
If this bit is set, the sound component chain does not do any
processing at interrupt time.

Data Structures

This section describes the data structures you need to use when writing a sound
component.

Sound Component Data Records

The flow of data from one sound component to another is managed using a sound
component data record. This record indicates to other sound components the format of
the data that a particular component is generating, together with the location and length
of the buffer containing that data. This allows other sound components to access data
from that component as needed. A sound component data record is defined by the
SoundConponent Dat a data type.

typedef struct {

| ong fl ags; /*sound conponent flags*/
OSType format ; /*data format*/

short nunthannel s; /*nunber of channels in data*/
short sanpl eSi ze; /*size of a sanple*/

Unsi gnedFi xed sanpl eRat e; /*sanpl e rate*/

| ong sanpl eCount ; [ *nunber of sanples in buffer*/
Byt e *puf fer; /*l ocation of data*/

| ong reserved; /*reserved*/

} SoundConponent Dat a, * SoundConponent Dat aPtr

Field descriptions

flags A set of bit flags whose meanings are specific to a particular sound
component.
f or mat The format of the data a sound component is producing. The

following formats are defined by Apple:

#defi ne kO fsetBi nary "raw '
#def i ne kTwosConpl enent "t wos'
#defi ne KMACE3Conpr essi on ' MAC3'
#def i ne KMACE6Conpr essi on ' MACE'

Sound Components Reference 5-29

sjuauodwo) punos m



CHAPTER 5

Sound Components

nuntChannel s

sanpl eSi ze

sanpl eRat e

sanpl eCount

buf f er
reserved

Sound Parameter Blocks

See “Audio Data Types” on page 5-26 for a description of these
formats. You can define additional format types, which are
currently assumed to be the types of proprietary compression
algorithms.

The number of channels of sound in the output data stream. If this
field contains the value 1, the data is monophonic. If this field
contains 2, the data is stereophonic. Stereo data is stored as
interleaved samples, in a left-to-right ordering.

The size, in bits, of each sample in the output data stream. Typically
this field contains the values 8 or 16. For compressed sound data,
this field indicates the size of the samples after the data has been
expanded.

The sample rate for the audio data. The sample rate is expressed as
an unsigned, fixed-point number in the range 0 to 65536.0 samples
per second.

The number of samples in the buffer pointed to by the buf f er
field. For compressed sounds, this field indicates the number of
compressed samples in the sound, not the size of the buffer.

The location of the buffer that contains the sound data.

Reserved for future use. You should set this field to 0.

The Sound Manager passes a component’s SoundConponent Pl aySour ceBuf f er
function a sound parameter block that describes the source data to be modified or sent
to a sound output device. A sound parameter block is defined by the
SoundPar anBl ock data type.

struct SoundPar anBl ock {

| ong
SoundConponent Dat a
Fi xed

short

short

| ong
Component | nst ance
SoundPar anPr ocPt r
SoundPar anPr ocPt r

| ong

short

}s

recordSi ze; /*size of this record in bytes*/
desc; /*description of sound buffer*/
rateMul tiplier;/*rate multiplier*/

| ef t Vol une; /*volume on | eft channel */

ri ght Vol une; /*volume on right channel */
quality; /*quality*/

filter; [*filter*/

nor eRt n; /*routine to call to get nore data*/
conpl etionRtn; /*buffer conplete routine*/

r ef Con; /*user refcon*/

result; [*result*/

t ypedef struct SoundParanBl ock SoundPar anBl ock
t ypedef SoundPar anBl ock *SoundPar anBl ockPtr

Field descriptions
recordSi ze

The length, in bytes, of the sound parameter block.

5-30 Sound Components Reference



CHAPTER 5

Sound Components

desc

rateMul tiplier

| ef t Vol unme

ri ght Vol ume

quality

filter
nmoreRt n

conpl eti onRt n

r ef Con

result

Sound Information Lists

A sound component data record that describes the format, size, and
location of the sound data. See “Sound Component Data Records”
on page 5-29 for a description of the sound component data record.

A multiplier to be applied to the playback rate of the sound. This
field contains an unsigned fixed-point number. If, for example, this
field has the value 2.0, the sound is played back at twice the rate
specified in the sanpl eRat e field of the sound component data
record contained in the desc field.

The playback volume for the left channel. You specify a volume
with 16-bit value, where 0 (hexadecimal 0x0000) represents no
volume and 256 (hexadecimal 0x0100) represents full volume. You
can overdrive a channel’s volume by passing volume levels greater
than 0x0100.

The playback volume for the right channel. You specify a volume
with 16-bit value, where 0 (hexadecimal 0x0000) represents no
volume and 256 (hexadecimal 0x0100) represents full volume. You
can overdrive a channel’s volume by passing volume levels greater
than 0x0100.

The level of quality for the sound. This value usually determines
how much processing should be applied during audio data
processing (such as rate conversion and decompression) to increase
the output quality of the sound.

Reserved for future use. You should set this field toni | .

A pointer to a callback routine that is called to retrieve another
buffer of audio data. This field is used internally by the Sound
Manager.

A pointer to a callback routine that is called when the sound has
finished playing. This field is used internally by the Sound Manager.

A value that is to be passed to the callback routines specified in the
nmor eRt n and conpl et i onRt n fields. You can use this field to pass
information (for example, the address of a structure) to a callback
routine.

The status of the sound that is playing. The value 1 indicates that
the sound is currently playing. The value 0 indicates that the sound
has finished playing. Any negative value indicates that some error
has occurred.

The SoundConponent Get | nf 0 and SoundConponent Set | nf o functions access
information about a sound component using a sound information list, which is defined
by the Soundl nf oLi st data type.

Sound Components Reference 5-31

sjuauodwo) punos m



CHAPTER 5

Sound Components

t ypedef struct {
short count ;
Handl e handl e;
} Soundl nfolList, *SoundlnfoListPtr;

Field descriptions

count The number of elements in the array referenced by the handl e field.

handl e A handle to an array of data elements. The type of these data
elements depends on the kind of information requested, which
is determined by the sel ect or parameter passed to
SoundConponent CGet | nf 0 or SoundConponent Set | nf 0. See
“Sound Component Information Selectors” beginning on page 5-22
for information about the available information selectors.

Compression Information Records

5-32

When the Sound Manager calls your SoundConponent Get | nf o routine with the
si Conpr essi onFact or selector, you need to return a pointer to a compression
information record, which is defined by the Conpr essi onl nf o data type.

typedef struct {

| ong recordSi ze;
OSType format;

short conpr essi onl D
short sampl esPer Packet ;
short byt esPer Packet ;
short byt esPer Fr ane;
short byt esPer Sanpl e;
short futureUsel,;

} Conpressionlnfo, *ConpressionlnfoPtr, **ConpressionlnfoHandl e;

Field descriptions

recordSi ze The size of this compression information record.
f or mat The compression format.

conpressi onl D The compression ID.

sanpl esPer Packet

The number of samples in each packet.
byt esPer Packet

The number of bytes in each packet.
byt esPer Fr ane

The number of bytes in each frame.
byt esPer Sanpl e

The number of bytes in each sample.

futureUsel Reserved for use by Apple Computer, Inc. You should set this
field to 0.

Sound Components Reference



CHAPTER 5

Sound Components

Sound Manager Utilities

This section describes several utility routines provided by the Sound Manager that are
intended for use only by sound components. You can use these routines to

= open and close the Apple Mixer component
= save and restore a user’s preference settings for a sound component
Note

For a description of the routines that a sound component must
implement, see “Sound Component-Defined Routines” on page 5-36. O

Opening and Closing the Apple Mixer Component

A sound output device component needs to open and close one or more instances of the
Apple Mixer component.

OpenMixerSoundComponent

DESCRIPTION

A sound output device component can use the OpenM xer SoundConponent function
to open and connect itself to the Apple Mixer component.

pascal OSErr OpenM xer SoundConponent
( SoundConponent Dat aPtr out put Descri pti on,
| ong out put Fl ags,
Conponent | nst ance *m xer Conponent) ;

out put Descri pti on
A description of the data format your sound output device is expecting to

receive.

out put Fl ags
A set of 32 bit flags that provide additional information about the data
format your output device is expecting to receive. See “Data Format
Flags” beginning on page 5-28 for a description of the constants you
can use to select bits in this parameter.

nm xer Conponent
The component instance of the Apple Mixer component. You need
this instance to call the SoundConponent Get Sour ceDat a and
Cl oseM xer SoundConponent functions.

The OpenM xer SoundConponent function opens the standard Apple Mixer
component and creates a connection between your sound output device component
and the Apple Mixer. If your output device can perform specific operations on the

Sound Components Reference 5-33

sjuauodwo) punos m



CHAPTER 5

Sound Components

stream of audio data, such as channel mixing and rate conversion, it should call
OpenM xer SoundConponent as many times as are necessary to create a unique
component chain for each sound source. If, on the other hand, your output device does
not perform channel mixing, it should call QpenM xer SoundConponent only once,
from its SoundConponent | ni t Qut put Devi ce function. This opens a single instance
of the Apple Mixer component, which in turn manages all the available sound sources.

Your component specifies the format of the data it can handle by filling in a sound
component data record and passing its address in the out put Descr i pti on parameter.
The sound component data record specifies the data format as well as the sample rate
and sample size expected by the output device component. If these specifications are
sufficient to determine the kind of data your component can handle, you should pass
the value 0 in the out put FI ags parameter. Otherwise, you can set flags in the

out put FI ags parameter to select certain kinds of input data. For example, you can set
the kNoChannel Conver si on flag to prevent the component chain from converting
monophonic sound to stereo sound, or stereo sound to monophonic sound. See “Data
Format Flags” beginning on page 5-28 for a description of the constants you can use to
select bits in the out put FI ags parameter.

SPECIAL CONSIDERATIONS

The OpenM xer SoundConponent function is available only in versions 3.0 and later of
the Sound Manager. It should be called only by sound output device components.

CloseMixerSoundComponent

DESCRIPTION

A sound output device component can use the Cl oseM xer SoundConponent function
to close the Apple Mixer.

pascal OSErr C oseM xer SoundConmponent (Conponent| nstance ci);

Ci The component instance of the Apple Mixer component.

The C oseM xer SoundConponent function closes the Apple Mixer component
instance specified by the ci parameter. Your output device component should call
this function when it is being closed.

SPECIAL CONSIDERATIONS

5-34

The O oseM xer SoundConponent function is available only in versions 3.0 and later
of the Sound Manager. It should be called only by sound output device components.

Sound Components Reference



RESULT CODES

CHAPTER 5

Sound Components

noErr 0 No error
i nval i dConponent | D -3000 Invalid component ID

Saving and Restoring Sound Component Preferences

A sound component can use the Set SoundPr ef er ence and Get SoundPr ef er ence
functions to save and restore a user’s preference settings.

SetSoundPreference

DESCRIPTION

A sound component can use the Set SoundPr ef er ence function to have the Sound
Manager store a block of preferences data in a resource file. You're most likely to use
this function in a sound output device component, although other types of sound
components can use it also.

pascal OSErr Set SoundPreference (OSType type, Str255 nane,
Handl e settings);

type The resource type to be used to create the preferences resource.
name The resource name to be used to create the preferences resource.

settings  Ahandle to the data to be stored in the preferences resource.

The Set SoundPr ef er ence function causes the Sound Manager to attempt to create

a new resource that contains preferences data for your sound component. You can use
this function to maintain a structure of any format across subsequent startups of the
machine. You'll retrieve the preferences data by calling the Get SoundPr ef er ence
function. The data is stored in a resource with the specified type and name in a resource
file in the Preferences folder in the System Folder. In general, the resource type and name
should be the same as the sound component subtype and name.

The set t i ngs parameter is a handle to the preferences data you want to store. It is the
responsibility of your component to allocate and initialize the block of data referenced
by that handle. The Sound Manager copies the handle’s data into a resource in the
appropriate location. Your sound component should dispose of the handle when

Set SoundPr ef er ence returns.

The format of the block of preferences data referenced by the set t i ngs parameter

is defined by your sound component. It is recommended that you include a field
specifying the version of the data format; this allows you to modify the format of the
block of data while remaining compatible with previous formats you might have defined.

Sound Components Reference 5-35

sjuauodwo) punos m



CHAPTER 5

Sound Components

SPECIAL CONSIDERATIONS

The Set SoundPr ef er ence function is available only in versions 3.0 and later of the
Sound Manager.

GetSoundPreference

A sound component can use the Get SoundPr ef er ence function to have the Sound
Manager read a block of preferences data from a resource file. You'll use it to retrieve a
block of preferences data you previously saved by calling Set SoundPr ef er ence.

pascal OSErr Get SoundPreference (OSType type, Str255 nane,
Handl e settings);

type The resource type of the preferences resource.
name The resource name of the preferences resource.

settings  Ahandle to the data in the preferences resource.

DESCRIPTION

The Get SoundPr ef er ence function retrieves the block of preferences data you
previously stored in a resource by calling the Set SoundPr ef er ence function. It is

the responsibility of your component to allocate the block of data referenced by the

set ti ngs handle. The Sound Manager resizes the handle (if necessary) and fills it with
data from the resource with the specified type and name. Your sound component should
dispose of the handle once it’s finished reading the data from it. You can determine the
size of the handle returned by the Sound Manager by calling the Memory Manager’s
Get Handl eSi ze function.

SPECIAL CONSIDERATIONS

The Get SoundPr ef er ence function is available only in versions 3.0 and later of the
Sound Manager.

Sound Component-Defined Routines

This section describes the routines you need to define in order to write a sound
component. You need to write routines to

= load, configure, and unload your sound component
= add and remove audio sources
= read and set component settings

= control and process audio data

5-36 Sound Components Reference



CHAPTER 5

Sound Components

Some of these routines are optional for some types of sound components. All routines
return result codes. If they succeed, they should return noEr r. To simplify dispatching,
the Component Manager requires these routines to return a value of type

Conponent Resul t .

See “Writing a Sound Component” beginning on page 5-8 for a description of how

you call these routines from within a sound component. See “Sound Manager Utilities”
beginning on page 5-33 for a description of some Sound Manager utility routines you
can use in a sound component.

Managing Sound Components

To write a sound component, you might need to define routines that manage the
loading, configuration, and unloading of your sound component:

= SoundConponent | ni t Qut put Devi ce
= SoundConponent Set Sour ce

= SoundConponent Get Sour ce

= SoundConponent Get Sour ceDat a

= SoundConponent Set Qut put

After the Sound Manager opens your sound component, it attempts to add your sound
component to a sound component chain. Thereafter, the Sound Manager calls your
component’s SoundConponent | ni t Qut put Devi ce function to give you an
opportunity to set default values for any associated hardware and to perform any
hardware-specific operations.

SoundComponentinitOutputDevice

DESCRIPTION

A sound output device component must implement the

SoundConponent | ni t Qut put Devi ce function. The Sound Manager calls this
function to allow a sound output device component to configure any associated
hardware devices.

pascal Component Result SoundConponent | nit Qut put Devi ce

(Conponent I nstance ti, |long actions);
ti A component instance that identifies your sound component.
actions A set of flags. This parameter is currently unused.

Your SoundConponent | ni t Qut put Devi ce function is called by the Sound Manager
at noninterrupt time to allow your sound output device component to perform any
hardware-specific initialization. You should perform any necessary initialization that

Sound Components Reference 5-37

sjuauodwo) punos m



CHAPTER 5

Sound Components

was not already performed in your OpenConponent function. Note that your
OpenConponent function cannot assume that the appropriate hardware is available. As
a result, the Sound Manager calls your SoundConponent | ni t Qut put Devi ce function
when it is safe to communicate with your audio hardware. You can call the

OpenM xer SoundConponent function to create a single sound component chain.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

Your SoundConponent | ni t Qut put Devi ce function is always called at noninterrupt
time. All other component-defined routines might be called at interrupt time.
Accordingly, your SoundConponent | ni t Qut put Devi ce function should handle any
remaining memory allocation needed by your component and it should lock down

any relocatable blocks your component will access.

Your SoundConponent | ni t Qut put Devi ce function should return noEr r if
successful or an appropriate result code otherwise.

See Listing 5-4 on page 5-17 for a sample SoundConponent | ni t Qut put Devi ce
function.

SoundComponentSetSource

DESCRIPTION

5-38

A sound component can implement the SoundConponent Set Sour ce function. The
Sound Manager calls this function to identify your component’s source component.

pascal Component Result SoundConponent Set Sour ce
(Component I nst ance ti,
SoundSour ce sour cel D,
Conponent | nst ance source);

ti A component instance that identifies your sound component.
sourcel D Asource ID for the source component chain created by the Apple Mixer.

source A component instance that identifies your source component.

Your SoundConponent Set Sour ce function is called by the Sound Manager to identify
to your sound component the sound component that is its source. The source component
is identified by the sour ce parameter. Your component uses that information when it

Sound Components Reference



RESULT CODES

CHAPTER 5

Sound Components

needs to obtain more data from its source (usually, by calling its
SoundConponent Get Sour ceDat a function).

Because a sound output device component is always connected directly to one or
more instances of the Apple Mixer, the SoundConponent Set Sour ce function needs
to be implemented only by utility components (that is, components that perform
modifications on sound data). Utility components are linked together into a chain of
sound components, each link of which has only one input source. As a result, a utility
component can usually ignore the sour cel D parameter passed to it.

Your SoundConponent Set Sour ce function should return noEr r if successful or an
appropriate result code otherwise.

SoundComponentGetSource

DESCRIPTION

A sound component can implement the SoundConponent Get Sour ce function. The
Sound Manager calls this function to determine your component’s source component.

pascal Component Result SoundConponent Get Sour ce
(Component I nst ance ti,
SoundSour ce sourcel D,
Conponent | nst ance *source);

ti A component instance that identifies your sound component.
sourcel D Asource ID for the source component chain created by the Apple Mixer.

source A component instance that identifies your source component.

Your SoundConponent Get Sour ce function is called by the Sound Manager to retrieve
your component’s source component instance. Your component should return, in the
sour ce parameter, the component instance of your component’s source. This should be
the source component instance your component was passed when the Sound Manager
called your SoundConponent Set Sour ce function.

In general, all sound components have sources, except for the source at the beginning

of the source component chain. In the unlikely event that your component does not have
a source, you should return ni | in the sour ce parameter. A sound output device
component is always connected directly to an instance of the Apple Mixer. Accordingly,
a sound output device component should return a component instance of the Apple
Mixer in the sour ce parameter and a source ID in the sour cel D parameter. A utility
component can ignore the sour cel D parameter.

Sound Components Reference 5-39

sjuauodwo) punos m



RESULT CODES

CHAPTER 5

Sound Components

Your SoundConponent Get Sour ce function should return noEr r if successful or an
appropriate result code otherwise.

SoundComponentGetSourceData

DESCRIPTION

RESULT CODES

5-40

A utility component must implement the SoundConponent Get Sour ceDat a function.
A sound output device component calls this function on its source component when it
needs more data.

pascal Component Result SoundConponent Get Sour ceDat a
(Component I nst ance ti,
SoundConponent Dat aPtr *sour ceDat a) ;

ti A component instance that identifies your sound component.

sour ceDat a
On output, a pointer to a sound component data record that specifies the
type and location of the data your component has processed.

Your SoundConponent Get Sour ceDat a function is called when the sound component
immediately following your sound component in the sound component chain needs
more data. Your function should generate a new block of audio data, fill out a sound
component data record describing the format and location of that data, and then return
the address of that record in the sour ceDat a parameter.

Your SoundConponent Get Sour ceDat a function might itself need to get more data
from its source component. To do this, call through to the source component’s
SoundConponent Get Sour ceDat a function. If your component cannot generate any
more data, it should set the sanpl eCount field of the sound component data record
to 0 and return noErr.

IMPORTANT

Sound output device components do not need to implement this
function, but all utility components must implement it. a

Your SoundConponent Get Sour ceDat a function should return noEr r if successful or
an appropriate result code otherwise.

Sound Components Reference



CHAPTER 5

Sound Components

SoundComponentSetOutput

DESCRIPTION

A sound output device component can call the SoundConponent Set Qut put function
of the Apple Mixer to indicate the type of data it expects to receive.

pascal Component Result SoundComponent Set CQut put
(Component I nst ance ti,
SoundConponent Dat aPtr request ed,
SoundConponent Dat aPtr *actual);

ti A component instance that identifies your sound component.
requested
A pointer to a sound component data record that specifies the type of the
data your component expects to receive.

act ual
This parameter is currently unused.

The Apple Mixer’s SoundConponent Set Cut put function can be called by a sound
output device component to specify the kind of audio data the output device component
wants to receive. The Apple Mixer uses that information to determine the type of sound
component chain it needs to construct in order to deliver that kind of audio data to your
sound output device component. For example, if your sound output device is able to
accept 16-bit samples, the Sound Manager doesn’t need to convert 16-bit audio data into
8-bit data.

The following lines of code illustrate how the sound output device component for the
Apple Sound Chip might call Apple Mixer’s SoundConponent Set Qut put function:

nmyDat aRec. f1 ags = O; /*ignored here*/
nmyDat aRec. format = kOf f set Bi nary; / * ASC needs of fset binary*/
nmyDat aRec. sanpl eRat e = rat e22khz; /*ASC needs 22 kHz sanpl es*/

nyDat aRec. sanpl eSi ze = 8§; /*ASC needs 8-bit data*/
nmyDat aRec. nuntChannel s = 2; /*ASC can do stereo*/
nmyDat aRec. sanpl eCount = 1024; /*ASC uses a 1K FI FO*/

nmyErr = SoundConponent Set Qut put ( mySour ce, &myDat aRec, &nyActual);

In general, however, a sound output device component shouldn’t need to call the Apple
Mixer’s SoundConponent Set Qut put function. Instead, it can indicate the type of data
it expects to receive when it calls the OpenM xer SoundConponent function. The
SoundConponent Set Qut put function is intended for sophisticated sound output
device components that might want to reinitialize the Apple Mixer.

IMPORTANT
Only the Apple Mixer component needs to implement this function. a

Sound Components Reference 5-41

sjuauodwo) punos m



RESULT CODES

CHAPTER 5

Sound Components

The Apple Mixer’s SoundConponent Set Qut put function returns noEr r if successful
or an appropriate result code otherwise.

Creating and Removing Audio Sources

To write a sound output device component, you might need to define two routines that
create and remove audio sources:

= SoundConponent AddSour ce

= SoundConponent RenpoveSour ce

Your component needs to contain these functions only if, like the Apple Mixer, it can mix
two or more audio channels into a single output stream. Sound components that operate
on a single input stream only do not need to include these functions.

SoundComponentAddSource

DESCRIPTION

5-42

A sound output device component that can mix multiple channel of audio data must
implement the SoundConponent AddSour ce function to add a new sound source.

pascal Component Result SoundConponent AddSource
(Conponent I nstance ti, SoundSource *sourcel D);

ti A component instance that identifies your sound component.

sourcel D On exit, a source ID for the newly created source component chain.

The SoundConponent AddSour ce function is called by the Sound Manager to create a
new sound source. If your sound output device component can mix multiple channels

of sound, it needs to define this function. Your SoundConponent AddSour ce function
should call the Sound Manager function OQpenM xer SoundConponent to create an new
instance of the Apple Mixer component. The Apple Mixer component then creates a
sound component chain capable of generating the type of data your sound output device
component wants to receive.

The Apple Mixer also assigns a unique 4-byte source ID that identifies the new sound
source and component chain. You can retrieve that source ID by calling the Apple
Mixer’s SoundConponent AddSour ce function. Your SoundConponent AddSour ce
function should then pass that source ID back to the Sound Manager in the sour cel D
parameter.

Sound Components Reference



CHAPTER 5

Sound Components

IMPORTANT

Most sound components do not need to implement the
SoundConponent AddSour ce function. Only sound components that
can handle more than one source of input need to define it. a

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

The SoundConponent AddSour ce function is called at noninterrupt time.

Your SoundConponent AddSour ce function should return noEr r if successful or an
appropriate result code otherwise.

See page 5-33 for a description of OpenM xer SoundConponent .

SoundComponentRemoveSource

DESCRIPTION

A sound output device component that implements the SoundConponent AddSour ce
function must also implement the SoundConponent RenpveSour ce function to
remove sound sources.

pascal Component Result SoundComponent RenbveSource
(Conponent I nstance ti, SoundSource sourcel D);

ti A component instance that identifies your sound component.

sourcel D Asource ID for the source component chain to be removed.

Your SoundConponent RenpveSour ce function is called by the Sound Manager
to remove the existing sound source specified by the sour cel D parameter. Your
SoundConponent RenpveSour ce function should do whatever is necessary to
invalidate that source and then call through to the Apple Mixer’s
SoundConponent RenoveSour ce function.

IMPORTANT

Most sound components do not need to implement the
SoundConponent RenbveSour ce function. Only sound components
that can handle more than one source of input need to define it. a

Sound Components Reference 5-43

sjuauodwo) punos m



CHAPTER 5

Sound Components

SPECIAL CONSIDERATIONS

RESULT CODES

Your SoundConponent RenmbveSour ce function is always called at noninterrupt time.

Your SoundConponent RenoveSour ce function should return noEr r if successful or
an appropriate result code otherwise.

Getting and Setting Sound Component Information

To write a sound component, you need to define two routines that determine the
capabilities of your component or to change those capabilities:

= SoundConponent Get | nf o
= SoundConponent Set | nf o

SoundComponentGetinfo

DESCRIPTION

5-44

A sound component must implement the SoundConponent Cet | nf o function. The
Sound Manager calls this function to get information about the capabilities of your
component.

pascal Component Result SoundConponent Get | nfo
(Component I nst ance ti,
SoundSour ce sourcel D,
CSType sel ector, void *infoPtr);

ti A component instance that identifies your sound component.
sourcel D Asource ID for a source component chain.

sel ect or A sound component information selector. See “Sound Component
Information Selectors” beginning on page 5-22 for a description of the
available selectors.

i nfoPtr On output, a pointer to the information requested by the caller.

Your SoundConponent Get | nf o function returns information about your sound
component. The sour cel D parameter specifies the sound source to return information
about, and the sel ect or parameter specifies the kind of information to be returned. If
the information occupies 4 or fewer bytes, it should be returned in the location pointed
to by the i nf oPt r parameter. If the information is larger than 4 bytes, the i nf oPt r
parameter is a pointer to a component information list, a 6-byte structure of type
Soundl nf oLi st :

Sound Components Reference



CHAPTER 5

Sound Components

t ypedef struct {
short count ;
Handl e handl e;
} Soundl nfolList, *SoundlnfoListPtr;

This structure consists of a count and a handle to a variable-sized array. The count field
specifies the number of elements in the array to which handl e is a handle. It is your
component’s responsibility to allocate the block of data referenced by that handle, but it
is the caller’s responsibility to dispose of that handle once it is finished with it.

The data type of the array elements depends on the kind of information being returned.
For example, the selector si Sanpl eSi zeAvai | abl e indicates that you should return
a list of the sample sizes your component can support. You return the information by
passing back, in the i nf oPt r parameter, a pointer to an integer followed by a handle to
an array of integers.

If your component cannot provide the information specified by the sel ect or
parameter, it should pass the selector to its source component.

SPECIAL CONSIDERATIONS

Your SoundComponent Get | nf o function is not called at interrupt time if it is passed
a selector that might cause it to allocate memory for the handle in the component
information list.

RESULT CODES
Your SoundConponent Get | nf o function should return noEr r if successful or an
appropriate result code otherwise.

SEE ALSO
See “Finding and Changing Component Capabilities” on page 5-18 for a sample
SoundConponent Cet | nf o function.

SoundComponentSetinfo

A sound component must implement the SoundConponent Set | nf o function. The
Sound Manager calls this function to modify settings of your component.

pascal Component Result SoundConponent Set | nf o
(Component I nst ance ti,
SoundSour ce sourcel D,
OSType sel ector, void *infoPtr);

ti A component instance that identifies your sound component.

Sound Components Reference 5-45

sjuauodwo) punos m



DESCRIPTION

RESULT CODES

CHAPTER 5

Sound Components

sourcel D Asource ID for a source component chain.

sel ector A sound component information selector. See “Sound Component
Information Selectors” beginning on page 5-22 for a description of the
available selectors.

i nfoPtr A pointer to the information your component is to use to modify its
settings. If the information occupies 4 or fewer bytes, however, this
parameter contains the information itself, not the address of the
information.

Your SoundConponent Set | nf o function is called by the Sound Manager to set one

of the settings for your component, as specified by the sel ect or parameter. If the
information associated with that selector occupies 4 or fewer bytes, it is passed on

the stack, in the i nf oPt r parameter itself. Otherwise, the i nf oPt r parameter

is a pointer to a structure of type Soundl nf oLi st . See the description of
SoundConponent Get | nf o for more information about the SoundI nf oLi st structure.

If your component cannot modify the settings specified by the sel ect or parameter, it
should pass the selector to its source component.

Your SoundConponent Set | nf o function should return noEr r if successful or an
appropriate result code otherwise.

Managing Source Data

To write a sound output device component, you might need to define routines that
manage the flow of data in a sound channel:

s SoundConponent St art Sour ce
s SoundConponent St opSour ce

SoundConponent PauseSour ce

SoundConponent Pl aySour ceBuf f er

SoundComponentStartSource

5-46

A sound output device component must implement the
SoundConponent St ar t Sour ce function. The Sound Manager calls this function to
start playing sounds in one or more sound channels.

Sound Components Reference



DESCRIPTION

CHAPTER 5

Sound Components

pascal Component Result SoundComponent St art Sour ce
(Conponent I nstance ti,
short count, SoundSource *sources);

ti A component instance that identifies your sound component.

count The number of source IDs in the array pointed to by the sour ce
parameter.

sources An array of source IDs.

Your SoundConponent St ar t Sour ce function is called by the Sound Manager to begin
playing the sounds originating from the sound sources specified by the sour ces
parameter. Your function should start (or resume) sending data from those sources to the
associated sound output device. If your component supports only one sound source, you
can ignore the sour ces parameter.

SPECIAL CONSIDERATIONS

RESULT CODES

Your SoundConponent St art Sour ce function can be called at interrupt time.

Your SoundConponent St ar t Sour ce function should return noEr r if successful or
an appropriate result code otherwise. You should return noEr r even if no sounds are
playing in the specified channels.

SoundComponentStopSource

A sound output device component must implement the SoundConponent St opSour ce
function. The Sound Manager calls this function to stop playing sounds in one or more
sound channels.

pascal Component Result SoundComnponent St opSour ce
(Component I nstance ti, short count,
SoundSour ce *sources);

ti A component instance that identifies your sound component.

count The number of source IDs in the array pointed to by the sour ce
parameter.

sour ces An array of source IDs.

Sound Components Reference 5-47

sjuauodwo) punos m



DESCRIPTION

RESULT CODES

CHAPTER 5

Sound Components

Your SoundConponent St opSour ce function is called by the Sound Manager to stop
the sounds originating from the sound sources specified by the sour ces parameter.
Your function should stop sending data from those sources to the associated sound
output device. In addition, your SoundConponent St opSour ce function should flush
any data from the specified sound sources that it's caching. If your component supports
only one sound source, you can ignore the sour ces parameter.

Your SoundConponent St opSour ce function should return noEr r if successful or an
appropriate result code otherwise. You should return noEr r even if no sounds are
playing in the specified channels.

SoundComponentPauseSource

DESCRIPTION

RESULT CODES

5-48

A sound output device component must implement the
SoundConponent PauseSour ce function. The Sound Manager calls this function to
stop pause the playing of sounds in one or more sound channels.

pascal Component Result SoundComponent PauseSour ce
(Conmponent I nst ance ti,
short count, SoundSource *sources);

ti A component instance that identifies your sound component.

count The number of source IDs in the array pointed to by the sour ce
parameter.

sources An array of source IDs.

Your SoundConponent PauseSour ce function is called by the Sound Manager to
pause the playing of the sounds originating from the sound sources specified by the
sour ces parameter. Your function should stop sending data from those sources to
the associated sound output device. Because your SoundConponent St ar t Sour ce
function might be called to resume playing sounds, you should not flush any data.
If your component supports only one sound source, you can ignore the sour ces
parameter.

Your SoundConponent PauseSour ce function should return noEr r if successful or
an appropriate result code otherwise. You should return noEr r even if no sounds are
playing in the specified channels.

Sound Components Reference



CHAPTER 5

Sound Components

SoundComponentPlaySourceBuffer

A sound component must implement the SoundConponent Pl aySour ceBuf f er
function. The Sound Manager calls this function to start a new sound playing.

pascal Component Result SoundConponent Pl aySour ceBuf f er
(Component I nst ance ti,
SoundSour ce sourcel D,
SoundPar anBl ockPtr pb,
| ong actions);

ti A component instance that identifies your sound component.
sourcel D Asource ID for a source component chain.
pb A pointer to a sound parameter block.

actions A set of 32 bit flags that describe the actions to be taken when preparing
to play the source data. See “Action Flags” on page 5-27 for a description
of the constants you can use to select bits in this parameter.

DESCRIPTION

Your SoundConponent Pl aySour ceBuf f er function is called by the Sound Manager
to start a new sound playing. The sound parameter block pointed to by the pb parameter
specifies the sound to be played. That parameter block should be passed successively to
all sound components in the chain specified by the sour cel D parameter. This allows the
components to determine their output formats and playback settings and to prepare for
a subsequent call to their SoundConponent Get Sour ceDat a function. It also allows a
sound output device component to prepare for starting up its associated hardware.

RESULT CODES

Your SoundConponent Pl aySour ceBuf f er function should return noEr r if
successful or an appropriate result code otherwise.

sjuauodwo) punos m

Sound Components Reference 5-49



CHAPTER 5

Sound Components

Summary of Sound Components

This section provides a C summary for the constants, data types, and routines you can
use to write a sound component. There are currently no Pascal interfaces available for

writing sound components.

C Summary

Constants

/ *conponent types*/
#def i ne kSoundConponent Type "sift’

#define kM xer Type "mioxr'
#def i ne kSoundHar dwar eType ' sdev'
#def i ne kSoundConpr essor ' scon
#def i ne kSoundDeconpr essor ' sdec'
#def i ne kNoSoundConponent Type Prkkx

/[*utility conmponent*/

/*m xer conponent*/

/*sound out put devi ce conponent*/
/ *conpr essi on conponent */

/ *deconpressi on conponent */

/*no type*/

/ *subtypes for kSoundConponent Type conponent type*/

#def i ne kRat e8SubType "ratb’
#def i ne kRat el6SubType "ratw
#defi ne kConverter SubType ' conv
#def i ne kSndSour ceSubType 'sour’

/*subtypes for kM xer Type conponent type*/
#def i ne kM xer 8SubType "'m xb'
#def i ne kM xer 16SubType "m xw

/*8-bit rate converter*/
/*16-bit rate converter*/
/*sanpl e format converter*/
/*generic source conponent*/

/[*8-bit m xer*/
/*16-bit m xer*/

/*subtypes for kSoundHar dwar eType conponent type*/

#def i ne kC assi cSubType 'cl as'
#def i ne KASCSubType "asc '
#def i ne kDSPSubType "dsp '

/*Cl assi ¢ hardware*/
[/ *ASC devi ce*/
/| *DSP devi ce*/

[ *subtypes for kSoundConpressor and kSoundDeconpressor conponent types*/

#def i ne kMace3SubType " MAC3'
#def i ne kMace6SubType " MACG
#def i ne kCDXA4SubType ' CDX4'
#def i ne kCDXA2SubType ' CDX2'

#def i ne kSoundConponent CodeType 'sift

5-50 Summary of Sound Components

[ *MACE 3: 1%/
[/ *MACE 6: 1*/
[*CDI XA 4: 1*/
[*CDI XA 2: 1%/

/*sound conponent code type*/



CHAPTER 5

Sound Components

/*first selector that can be del egated up the chain*/
#def i ne kDel egat edSoundConponent Sel ect ors 0x0100

/ *Conmponent Manager sel ectors for routines*/
enum {

/*the follow ng calls cannot be del egat ed*/
kSoundConponent I ni t Qut put Devi ceSel ect = 1,
kSoundConponent Set Sour ceSel ect
kSoundConponent Get Sour ceSel ect
kSoundConponent Get Sour ceDat aSel ect ,
kSoundConponent Set Qut put Sel ect

/*the followi ng calls can be del egat ed*/

kSoundConponent AddSour ceSel ect = kDel egat edSoundConponent Sel ectors + 1,

kSoundConponent RemmoveSour ceSel ect ,
kSoundConponent Get | nf 0Sel ect,
kSoundConponent Set | nf 0Sel ect,
kSoundConponent St art Sour ceSel ect
kSoundConponent St opSour ceSel ect
kSoundConponent PauseSour ceSel ect ,
kSoundConponent Pl aySour ceBuf f er Sel ect

i

/*sound conponent information sel ectors*/

#def i ne si Channel Avai l abl e ' chav' /*nunber of channel s avail abl e*/
#def i ne si Conpr essi onAvai |l abl e 'cmav' /*conpression types avail abl e*/
#def i ne si Conpressi onFact or ‘cnf a' /*current conpression factor*/
#def i ne si Conpressi onType ' conp' /*current conpression type*/
#def i ne si Har dwar eMut e "hnut' [*current hardware mute state*/
#def i ne si Har dwar eVol une "hvol * /*current hardware vol ume*/
#def i ne si Har dwar eVol unmeSt eps " hst p' /*nunber of hardware vol ume steps*/
#def i ne si HeadphoneMut e "'pmut’ /*current headphone mute state*/
#def i ne si HeadphoneVol une " pvol ' /*current headphone vol unme*/
#def i ne si HeadphoneVol umeSt eps " hdst' /*num of headphone vol une steps*/
#def i ne si Nunber Channel s ' chan' /*current nunber channel s*/
#define siQality ‘qual’ /*current quality*/

#define si RateMultiplier "roul’ [*current rate multiplier*/
#def i ne si Sanpl eRat e "srat’ /*current sanple rate*/

#def i ne si Sanpl eRat eAvai | abl e "srav' /*sanpl e rates avail abl e*/
#defi ne si Sanpl eSi ze 'ssiz' [*current sanple size*/

#def i ne si Sanpl eSi zeAvai | abl e 'ssav' /*sanpl e sizes avail abl e*/
#def i ne si Speaker Mut e ‘st /*current speaker rmnute*/

#defi ne si Speaker Vol une 'svol' [ *current speaker vol ume*/
#def i ne si Vol une "vol u' /*current volume setting*/

Summary of Sound Components

5-51

sjuauodwo) punos m



/*audi o

#def i
#def i
#def i
#def i

ne
ne
ne
ne

/ *sound

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i

#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne

ne
ne

CHAPTER 5

Sound Components

data format types*/

kO f set Bi nary "raw '
kTwos Conpl enent "t wos'
kMACE3Conpr essi on " MAC3'
kMACE6Conpr essi on " MACG'

conmponent features flags*/

k8Bi t Rawl n (1
k8Bi t Twosl n (1
k16Bitln (1
kSt ereoln (1
k8Bi t RawCut (1
k8Bi t TwosQut (1
k16Bi t Qut (1
kSt er eoQut (1
kRever se (1
kRat eConvert (1
kCr eat eSoundSour ce (1
kH ghQual ity (1
kReal Ti ne (1

<<
<<
<<
<<
<<
<<
<<
<<

<<
<<
<<

<<
<<

0)
1)
2)
3)
8)
9)
10)
11)

16)
17)
18)

22)
23)

/*data flags*/

/*action flags*/

/ *perfornance fl ags*/

/*action flags for SoundConponent Pl aySour ceBuf fer*/

#def i
#def i
#def i

ne
ne
ne

/*fl ags

#def
#def
#def
#def

#def i
#def i
#def i
#def i

ne
ne
ne
ne

ne
ne
ne
ne

kSour cePaused (1 << 0)
kPassThr ough (1 << 16)
kNoSoundConponent Chai n (1 << 17)

for OpenM xer SoundComnponent */

kNoM Xxi ng (1
kNoSanpl eRat eConversion (1
kNoSanpl eSi zeConversion (1
kNoSanpl eFor mat Conver si on

(1
kNoChannel Conver si on (1
kNoDeconpr essi on (1
kNoVol uneConver si on (1

kNoReal ti meProcessi ng (1

/*quality flags*/
#define kBestQuality (1

5-52

Summary of Sound Components

<<
<<
<<

<<
<<
<<
<<
<<

<<

0)
1)
2)

3)
4)
5)
6)
7)

0)

/*don't
/*don't
/*don't
\

/*don' t
/*don't
/*don't
/*don't
/*don't

m x sources*/
convert sample rate*/
convert sanple size*/

convert sanple format*/
convert stereo/ nono*/
deconpress*/

apply vol ume*/

run at interrupt tinme*/

/*use interp. in rate conv.*/



CHAPTER 5

Sound Components

/*vol ume specifications*/

#define kSilenceByte 0x80
#defi ne kSi | encelLong 0x80808080
#defi ne kFul | Vol une 0x0100

Data Types

Unsigned Fixed-Point Numbers

t ypedef unsigned | ong Unsi gnedFi xed,;

Sound Component Data Record

typedef struct {

| ong fl ags;
OSType format;
short nunthannel s;
short sanpl eSi ze;
Unsi gnedFi xed sanpl eRat e;
| ong sampl eCount ;
Byt e *buf fer;

| ong reserved;

/*unsi gned fi xed-poi nt numnber*/

/*sound conponent flags*/
/*data format*/

/*nunber of channels in data*/
/*size of a sanple*/

/*sanpl e rate*/

/*nunber of samples in buffer*/
/*1 ocation of data*/

[ *reserved*/

} SoundConponent Dat a, * SoundConponent Dat aPtr

Sound Parameter Block

t ypedef pascal Bool ean (*SoundParanProcPtr) ( SoundPar anBl ockPtr *pb);

struct SoundPar anBl ock {
| ong recordSi ze;
SoundConponent Dat a desc;

/*size of this record in bytes*/
/*description of sound buffer*/

Fi xed rateMul tiplier;/*rate multiplier*/

short | ef t Vol une; /*vol ume on | eft channel */

short ri ght Vol ure; /*volume on right channel */

| ong quality; /[*quality*/

Conponent | nst ance filter; [*filter*/

SoundPar anPr ocPt r nor eRt n; /*routine to call to get nore data*/

SoundPar anPr ocPt r
| ong r ef Con;
short result;

b

conpl eti onRt n;

/*buffer conplete routine*/
/*user refcon*/
[*result*/

t ypedef struct SoundParanBl ock SoundPar anBl ock;
t ypedef SoundPar anBl ock *SoundPar anBl ockPt r

Summary of Sound Components

5-53

sjuauodwo) punos m



CHAPTER 5

Sound Components

Sound Source

typedef struct privateSoundSource *SoundSource;

Sound Information List

typedef struct {
short count ;
Handl e handl e;
} Soundl nfoList, *SoundlnfoListPtr;

Compression Information Record

typedef struct {

| ong recordSi ze;
OSType format;

short conpr essi onl D
short sanpl esPer Packet ;
short byt esPer Packet ;
short byt esPer Fr ane;
short byt esPer Sanpl e;
short futureUsel,;

} Conpressionlnfo, *ConpressionlnfoPtr, **ConpressionlnfoHandl e;

Sound Manager Utilities

Opening and Closing the Apple Mixer Component

pascal OSErr OpenM xer SoundConponent
( SoundConponent Dat aPtr out put Descri pti on,
| ong out put Fl ags,
Conponent | nst ance *m xer Conponent) ;

pascal OSErr C oseM xer SoundConponent
(Conponent | nstance ci);

Saving and Restoring Sound Component Preferences

pascal OSErr Set SoundPreference
(OSType type, Str255 nane, Handl e settings);

pascal OSErr Get SoundPreference
(COSType type, Str255 nane, Handl e settings);

5-54 Summary of Sound Components



CHAPTER 5

Sound Components

Sound Component-Defined Routines

Managing Sound Components

pascal

pascal

pascal

pascal

pascal

Conponent Resul t SoundConponent | ni t Qut put Devi ce
(Conponent I nstance ti, |ong actions);

Conponent Resul t SoundConponent Set Sour ce
(Conponent I nstance ti, SoundSource sourcel D,
Conponent | nst ance source);

Conponent Resul t SoundConponent Get Sour ce
(Conponent I nstance ti, SoundSource sourcel D,
Conponent | nst ance *source);

Conponent Resul t SoundConponent Get Sour ceDat a
(Conponent | nst ance ti,
SoundConponent Dat aPtr *sour ceDat a) ;

Conponent Resul t SoundConponent Set Cut put
(Conponent | nst ance ti,
SoundConponent Dat aPtr request ed,
SoundConponent Dat aPtr *actual);

Creating and Removing Audio Sources

pascal

pascal

Conponent Resul t SoundConponent AddSour ce
(Component I nstance ti, SoundSource *sourcel D);

Conponent Resul t SoundConponent RenmoveSour ce
(Conponent I nstance ti, SoundSource sourcel D);

Getting and Setting Sound Component Information

pascal

pascal

Component Resul t SoundComnponent Get | nfo
(Component I nstance ti, SoundSource sourcel D,
OSType sel ector, void *infoPtr);

Component Resul t SoundComnponent Set | nf o
(Component I nstance ti, SoundSource sourcel D,
OSType sel ector, void *infoPtr);

Managing Source Data

pascal

pascal

Conponent Resul t SoundConponent St art Sour ce
(Conponent I nstance ti, short count,
SoundSour ce *sources);

Conponent Resul t SoundConponent St opSour ce
(Conponent I nstance ti, short count,
SoundSour ce *sources);

Summary of Sound Components

5-55

sjuauodwo) punos m



CHAPTER 5

Sound Components

pascal Component Result SoundComponent PauseSour ce
(Conponent I nstance ti, short count,
SoundSour ce *sources);

pascal Component Result SoundConponent Pl aySour ceBuf f er
(Conponent I nstance ti, SoundSource sourcel D
SoundPar anBl ockPtr pb, |ong actions);

Assembly-Language Summary

Data Structures

Sound Component Data Record

0 flags long sound component flags

4 f or mat long data format

8 numChannel s word number of channels in data
10 sanpl eSi ze word size of a sample
12 sanpl eRat e long sample rate (Fixed)
16 sanpl eCount long number of samples in buffer
20 buf f er long location of data
24 reserved long reserved

Sound Parameter Block

0 recordSize long size of this record in bytes
4 desc 28 bytes description of sound buffer
32 rateMul tiplier long rate multiplier (Fixed)
36 | ef t Vol une word volume on left channel
38 ri ght Vol ume word volume on right channel
40 quality long quality
44 filter long filter
48 mor eRt n long routine to call to get more data
52 conpl eti onRtn long buffer complete routine
56 ref Con long user refcon
60  result word result

Sound Information List

0 count word number of data items in the handle
2 handle long handle to list of data items

5-56 Summary of Sound Components



CHAPTER 5

Sound Components

Compression Information Record

0
4
8
10
12
14
16
18

recordSi ze long
f or mat 4 bytes
conpressi onl D word
sanpl esPer Packet word
byt esPer Packet word
byt esPer Fr ane word
byt esPer Sanpl e word
futureUsel word

Summary of Sound Components

the size of this record
compression format

compression ID

the number of samples per packet
the number of bytes per packet
the number of bytes per frame
the number of bytes per sample
reserved

5-57

sjuauodwo) punos m






	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Sound TOC
	 Introduction to Sound
	 Sound Manager TOC
	 Sound Manager
	 Sound Input Manager TOC
	 Sound Input Manager
	 Speech Manager TOC
	 Speech Manager
	 Sound Components TOC
	Sound Components
	About Sound Components
	Sound Component Chains
	The Apple Mixer
	The Data Stream

	Writing a Sound Component
	Creating a Sound Component
	Specifying Sound Component Capabilities
	Dispatching to Sound Component-Defined Routines
	Registering and Opening a Sound Component
	Finding and Changing Component Capabilities

	Sound Components Reference
	Constants
	Sound Component Information Selectors
	Audio Data Types
	Sound Component Features Flags
	Action Flags
	Data Format Flags

	Data Structures
	Sound Component Data Records
	Sound Parameter Blocks
	Sound Information Lists
	Compression Information Records

	Sound Manager Utilities
	Opening and Closing the Apple Mixer Component
	Saving and Restoring Sound Component Preferences

	Sound Component-Defined Routines
	Managing Sound Components
	Creating and Removing Audio Sources
	Getting and Setting Sound Component Information
	Managing Source Data


	Summary of Sound Components
	C Summary
	Constants
	Data Types
	Sound Manager Utilities
	Sound Component-Defined Routines

	Assembly-Language Summary
	Data Structures



	 Audio Components TOC
	 Audio Components
	 Glossary
	 Index
	 Colophon

