

C H A P T E R 3

3

E
rrors, W

arnings, and N
otices

Errors, Warnings, and Notices 3

This chapter describes the errors, warnings, and notices that can be posted by
QuickDraw GX functions, and how you can manipulate them. In addition, this chapter
describes how you can use application-defined handlers to provide alternative or
complementary processing of errors, warnings, and notices. The reference sections of the
Inside Macintosh: QuickDraw GX books list the errors, warnings, and notices for each
function that they describe.

Before reading this chapter, you should be familiar with the information in the chapter
“Introduction to QuickDraw GX” in Inside Macintosh: QuickDraw GX Objects.

The errors, warnings, and notices and their related functions that are discussed in this
chapter pertain to the graphic and typography parts of QuickDraw GX and do not, in
general, apply to printing. For more information on printing errors, see Inside Macintosh:
QuickDraw GX Printing and Inside Macintosh: QuickDraw GX Printing Extensions and
Drivers.

This chapter starts by introducing you to the errors, warnings, and notices provided in
the debugging and non-debugging versions of QuickDraw GX. It then shows you how
to use their related functions to

■ obtain the QuickDraw GX errors, warnings, and notices posted

■ change the QuickDraw GX errors, warnings, and notices posted

■ ignore QuickDraw GX warnings and notices

■ install application-defined error, warning, and notice handlers

This chapter also contains reference information for all data types, application-defined
handlers, and functions associated with QuickDraw GX errors, warnings, and notices.

About QuickDraw GX Errors, Warnings, and Notices 3

QuickDraw GX posts errors, warnings, or notices, depending upon the severity of the
problem that was detected when your application was running. The three types of
QuickDraw GX execution problems are

■ Errors. QuickDraw GX posts errors whenever a function in your application is unable
to execute. An error indicates that an operation cannot continue. Execution terminates
at the nonexecutable function. When an error is posted inside a QuickDraw GX
function, the function returns immediately with a function result (if any) of 0 or nil.

■ Warnings. QuickDraw GX posts warnings whenever your application executes a
function that doesn’t provide the result that you expect. Execution continues
internally, as if the warning had not been posted.

■ Notices. QuickDraw GX posts notices to alert you to the fact that it has performed an
unnecessary or redundant function. Execution continues as if the notice had not been
posted. Graphics notices are posted only in the debugging version of QuickDraw GX.
About QuickDraw GX Errors, Warnings, and Notices 3-3

C H A P T E R 3

Errors, Warnings, and Notices

In addition to the posting of errors, warnings, and notices, QuickDraw GX supports
application-defined error, warning, and notice handlers. You can use your own handlers
or QuickDraw GX’s errors, warnings, and notices either separately or together.

To obtain errors, warnings, and notices, either check for QuickDraw GX errors,
warnings, and notices or install your application’s error, warning, and notice handlers.
The use of error, warning, and notice handlers is a simple and efficient method of
managing errors, warnings, and notices. Error handlers are described in the section
“Installing an Error, Warning, or Notice Handler” beginning on page 3-40.

Figure 3-1 shows the relationship of the two problem-management approaches.

Figure 3-1 QuickDraw GX and application-defined error, warning, and notice management

There are two versions of QuickDraw GX.

■ Non-debugging version. This version of QuickDraw GX is intended for debugged
applications used by the end user. The number of QuickDraw GX errors and warnings
is limited. Notices are not posted. This version of QuickDraw GX is smaller and faster
than the debugging version.

■ Debugging version. This version of QuickDraw GX is intended for developers that
are writing and debugging new applications. This version provides an extensive set of
QuickDraw GX errors, warnings, and notices to assist in debugging and optimizing
the performance of your application. Special functions are provided to assist in the
posting, utilization, and control of debugging errors.

To determine if the debugging or non-debugging version is installed, use the Gestalt
function described in the chapter “QuickDraw GX and the Macintosh Environment” in
this book.

QuickDraw GX

application

QuickDraw GX–defined

errors, warnings,

and notices

Application–defined

error, warning,

 and notice handlers
3-4 About QuickDraw GX Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3

E
rrors, W

arnings, and N
otices

QuickDraw GX posts most errors and warnings only in the debugging version.
The non-debugging version posts errors and warnings if the error could not be
anticipated at compile time—for example, running out of memory or disk space. You
should correct application problems that result in errors and warnings while developing
your application. The non-debugging version does not include most of the errors and
warnings that the debugging version provides.

QuickDraw GX non-debugging and debugging errors are defined by the
gxGraphicErrors enumeration given in the section “Errors” beginning on page 3-42.
QuickDraw GX non-debugging and debugging warnings are defined by the
gxGraphicWarnings enumeration given in the section “Warnings” beginning on
page 3-50. QuickDraw GX debugging notices are defined by the gxGraphicNotices
enumeration given in the section “Notices” beginning on page 3-53.

Non-Debugging Version 3
When you install the non-debugging version, QuickDraw GX provides a reduced set of
errors and warnings. Since the amount of testing is less, the non-debugging version of
QuickDraw GX runs significantly faster than the debugging version. Use the
non-debugging version for debugged applications that you have extensively tested
using the debugging version of QuickDraw GX.

When the non-debugging version is installed and corrupt data is used, drawings may
execute with undesirable results, including crashes, without the posting of errors and
warnings. With other execution problems, the application may not crash, but the
drawing may not yield the expected result.

In the non-debugging version, typical problem messages indicate that there is
insufficient memory, insufficient storage space, or that the required fonts are
not installed. If problems persist, you can always install the debugging version to assist
in the analysis of the errors that are occurring.

For a complete list of errors, please see the graphics errors.h interface file. The many
notices, warnings, and errors defined between #ifdef debugging and #endif in that
file are available only with the debugging version.

A debugged application should encounter only errors like

out_of_memory

not_enough_memory_for_graphics_client_heap

graphics_client_too_small

could_not_create_backing_store

A debugged application should encounter warnings like

character_substitution_occurred

map_shape_out_of_range

move_shape_out_of_range

scale_shape_out_of_range
About QuickDraw GX Errors, Warnings, and Notices 3-5

C H A P T E R 3

Errors, Warnings, and Notices

rotate_shape_out_of_range

skew_shape_out_of_range

map_transform_out_of_range

move_transform_out_of_range

scale_transform_out_of_range

rotate_transform_out_of_range

skew_transform_out_of_range

Both the debugging and non-debugging versions of QuickDraw GX provide a
debugging utility called GraphicsBug. This versatile utility allows you to examine the
details of each graphics object. GraphicsBug is described in the chapter “QuickDraw GX
Debugging” in this book.

Errors 3

This section describes the errors that may be posted by both the debugging and
non-debugging versions of QuickDraw GX. These errors can be grouped into the
following categories:

■ fatal errors

■ internal errors

■ recoverable errors

■ font management errors

■ bad parameter errors

■ implementation limit errors

■ font scaler errors

Each QuickDraw GX error has an error number and an error name. Table 3-1 gives the
non-debugging error number ranges.

Table 3-1 Non-debugging error number ranges

Number Name

–27999 gxFirstSystemError

–27999 gxFirstFatalError

–27951 gxLastFatalError

–27950 gxFirstNonFatalError

–27900 gxFirstFontScalerError

–27851 gxLastFontScalerError

–27850 gxFirstParameterError

–27800 gxFirstImplementationLimitError
3-6 About QuickDraw GX Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3

E
rrors, W

arnings, and N
otices

QuickDraw GX fatal errors terminate operation and automatically call the
GXExitGraphics function. Control returns to the calling application after the error is
posted. If the function that caused the error returns a function result, its value is either 0
or nil. Table 3-2 lists fatal errors. They are included in both the debugging and
non-debugging versions of QuickDraw GX.

QuickDraw GX nonfatal internal errors indicate damaged files, memory problems, or
incorrect implementation of QuickDraw GX. Table 3-3 lists the internal errors.

Table 3-4 lists the QuickDraw GX recoverable errors.

Table 3-2 Fatal errors

Number Name

–27999 out_of_memory

–27998 internal_fatal_error

–27997 no_outline_font_found

–27996 not_enough_memory_for_graphics_client_heap

–27995 could_not_create_backing_store

Table 3-3 Internal errors

Number Name

–27950 internal_error

–27949 internal_font_error

–27948 internal_layout_error

Table 3-4 Recoverable errors

Number Name

–27946 could_not_dispose_backing_store

–27945 unflattening_interrupted_by_client
About QuickDraw GX Errors, Warnings, and Notices 3-7

C H A P T E R 3

Errors, Warnings, and Notices

Table 3-5 lists the QuickDraw GX font management errors.

Table 3-6 lists the QuickDraw GX font scaler errors.

Table 3-5 Font management errors

Number Name

–27944 font_cannot_be_changed

–27943 illegal_font_parameter

Table 3-6 Font scaler errors

Number Name

–27900 null_font_scaler_context

–27899 null_font_scaler_input

–27988 invalid_font_scaler_context

–27897 invalid_font_scaler_input

–27896 invalid_font_scaler_font_data

–27895 font_scaler_newblock_failed

–27894 font_scaler_getfonttable_failed

–27893 font_scaler_bitmap_allocation_failed

–27892 font_scaler_outline_allocation_failed

–27891 required_font_scaler_table_missing

–27890 unsupported_font_scaler_outline_format

–27889 unsupported_font_scaler_stream_format

–27888 unsupported_font_scaler_font_format

–27887 font_scaler_hinting_error

–27886 font_scaler_rasterizer_error

–27885 font_scaler_internal_error

–27884 font_scaler_invalid_matrix

–27883 font_scaler_fixed_overflow

–27882 font_scaler_api_version_mismatch

–27881 font_scaler_streaming_aborted

–27880 unknown_font_scaler_error
3-8 About QuickDraw GX Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
QuickDraw GX posts bad parameter errors when a required parameter is out of range,
invalid, or is passed with the value of nil. Table 3-7 lists bad parameter errors.

Table 3-7 Bad parameter errors

Number Name

–27850 parameter_is_nil

–27849 shape_is_nil

–27848 style_is_nil

–27847 transform_is_nil

–27846 ink_is_nil

–27845 transferMode_is_nil

–27844 color_is_nil

–27843 colorProfile_is_nil

–27842 colorSet_is_nil

–27841 spoolProcedure_is_nil

–27840 tag_is_nil

–27839 type_is_nil

–27838 mapping_is_nil

–27837 invalid_viewDevice_reference

–27836 invalid_viewGroup_reference

–27835 invalid_viewPort_reference
About QuickDraw GX Errors, Warnings, and Notices 3-9

C H A P T E R 3

Errors, Warnings, and Notices
QuickDraw GX posts implementation limit errors to indicate that the size or number
exceeds the size or number supported by the current version of QuickDraw GX.
Table 3-8 lists the implementation limit errors.

Warnings 3

This section describes the warnings that the debugging and non-debugging versions of
QuickDraw GX may post. These errors can be grouped into the following categories:

■ stack, heap, and object warnings

■ result is out of range warnings

■ parameter is out of range warnings

■ font scaler warnings

■ unexpected result warnings

■ storage warnings

Each QuickDraw GX warning has a unique warning number and warning name.
Table 3-9 gives the non-debugging warning number ranges.

Table 3-8 Implementation limit errors

Number Name

–27800 number_of_contours_exceeds_implementation_limit

–27799 number_of_points_exceeds_implementation_limit

–27798 size_of_polygon_exceeds_implementation_limit

–27797 size_of_path_exceeds_implementation_limit

–27796 size_of_text_exceeds_implementation_limit

–27795 size_of_bitmap_exceeds_implementation_limit

–27794 number_of_colors_exceeds_implementation_limit

–27793 procedure_not_reentrant

Table 3-9 Non-debugging warning number ranges

Number Description

–26999 gxFirstSystemWarning

–26950 gxFirstResultOutOfRangeWarning

–26900 gxFirstParameterOutOfRangeWarning

–26850 gxFirstFontScalerWarning
3-10 About QuickDraw GX Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
QuickDraw GX overflow warnings occur when the number of warnings that have been
added to the warning or notice stack exceeds the current implementation limit. An
underflow warning occurs when the GXPopGraphicsNotice or
GXPopGraphicsWarning function attempts to remove an error or warning on its
ignore stack and there is no error or warning to remove. This topic is discussed in the
section “Ignoring Warnings and Notices” beginning on page 3-37.

Table 3-10 lists QuickDraw GX stack, heap, and object warnings.

QuickDraw GX result out of range warnings occur when a function result is out of the
usable or defined QuickDraw boundaries. Table 3-11 lists result out of range warnings.

Table 3-10 Stack, heap, and object warnings

Number Name

–26999 warning_stack_underflow

–26998 warning_stack_overflow

–26997 notice_stack_underflow

–26996 notice_stack_overflow

–26995 about_to_grow_heap

–26994 about_to_unload_objects

Table 3-11 Result out of range warnings

Number Name

–26950 map_shape_out_of_range

–26949 move_shape_out_of_range

–26948 scale_shape_out_of_range

–26947 rotate_shape_out_of_range

–26946 skew_shape_out_of_range

–26945 map_transform_out_of_range

–26944 move_transform_out_of_range

–26943 scale_transform_out_of_range

–26942 rotate_transform_out_of_range

–26941 skew_transform_out_of_range

–26940 map_points_out_of_range
About QuickDraw GX Errors, Warnings, and Notices 3-11

C H A P T E R 3

Errors, Warnings, and Notices
QuickDraw GX parameter out of range warnings occur when a function parameter is
out of the usable range. Table 3-12 lists parameter out of range warnings.

Table 3-13 lists QuickDraw GX font scaler warnings.

Table 3-12 Parameter out of range warnings

Number Name

–26900 contour_out_of_range

–26899 index_out_of_range_in_contour

–26898 picture_index_out_of_range

–26897 color_index_requested_not_found

–26896 colorSet_index_out_of_range

–26895 index_out_of_range

–26894 count_out_of_range

–26893 length_out_of_range

–26892 font_table_index_out_of_range

–26891 font_glyph_index_out_of_range

–26890 point_out_of_range

–26889 profile_response_out_of_range

Table 3-13 Font scaler warnings

Number Name

–26850 font_scaler_no_output

–26849 font_scaler_fake_metrics

–26848 font_scaler_fake_linespacing

–26847 font_scaler_glyph_substitution

–26846 font_scaler_no_kerning_applied
3-12 About QuickDraw GX Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
Table 3-14 lists QuickDraw GX unexpected result warnings.

Table 3-15 lists QuickDraw GX data stream storage warnings.

Debugging Version 3
When you install the debugging version, QuickDraw GX posts errors, warnings, and
notices in addition to those posted by the non-debugging version. The debugging
analysis and resulting number of errors, warnings, and notices posted is far more
extensive than can be provided by the non-debugging version of QuickDraw GX. As a
result, the debugging version executes significantly slower than the non-debugging
version.

The errors and warnings posted by both the debugging and non-debugging versions of
QuickDraw GX are listed in the sections “Errors” beginning on page 3-6 and “Warnings”
beginning on page 3-10. The errors, warnings, and notices described in the following
sections are posted only in the debugging version of QuickDraw GX.

The debugging version also provides a number of useful functions that you can use to
analyze your code and that assist in determining the cause of a wide variety of problems.
These are described in the section “Using Errors, Warnings, and Notices” beginning on
page 3-30.

The debugging version of QuickDraw GX also provides validation functions and
GraphicsBug so that you can examine the details of each graphics object. These are
described in the chapter “QuickDraw GX Debugging” in this book.

Table 3-14 Unexpected result warnings

Warning
number Warning name

–26845 character_substitution_took_place

–26844 unable_to_bounds_on_multiple_devices

–26843 font_language_not_found

–26842 font_not_found_during_unflattening

Table 3-15 Storage warnings

Number Name

–26841 unrecognized_stream_version

–26840 bad_data_in_stream
About QuickDraw GX Errors, Warnings, and Notices 3-13

C H A P T E R 3

Errors, Warnings, and Notices
Errors 3

This section describes the errors that the debugging version of QuickDraw GX may post.
QuickDraw GX debugging errors can be grouped into the following categories:

■ internal errors

■ font parameter errors

■ bad parameter errors

■ restricted access errors

■ wrong type or bad reference errors

■ validation errors

Table 3-16 gives the debugging error number range.

Table 3-17 lists the internal debugging errors.

Table 3-18 lists the font parameter debugging errors.

Table 3-16 Debugging error number range

Number Name

–27700 gxFirstSystemDebuggingError

–27000 gxLastSystemError

Table 3-17 Internal debugging errors

Number Name

–27700 functionality_unimplemented

–27699 clip_to_frame_shape_unimplemented

Table 3-18 Font parameter debugging errors

Number Name

–27698 illegal_font_storage_type

–27697 illegal_font_storage_reference

–27696 illegal_font_attributes
3-14 About QuickDraw GX Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
QuickDraw GX bad parameter errors are posted when a required parameter is out of
range, invalid, or is passed with the value of nil. Table 3-19 lists the bad parameter
debugging errors.

Table 3-19 Bad parameter debugging errors

Number Name

–27695 parameter_out_of_range

–27694 inconsistent_parameters

–27693 index_is_less_than_zero

–27692 index_is_less_than_one

–27691 count_is_less_than_zero

–27690 count_is_less_than_one

–27689 contour_is_less_than_zero

–27688 length_is_less_than_zero

–27687 invalid_client_reference

–27686 invalid_graphics_heap_start_pointer

–27685 invalid_nongraphic_globals_pointer

–27684 colorSpace_out_of_range

–27683 pattern_lattice_out_of_range

–27682 frequency_parameter_out_of_range

–27681 tinting_parameter_out_of_range

–27680 method_parameter_out_of_range

–27679 space_may_not_be_indexed

–27678 glyph_index_too_small

–27677 no_glyphs_added_to_font

–27676 glyph_not_added_to_font

–27675 point_does_not_intersect_bitmap

–27674 required_font_table_not_present

–27673 unknown_font_table_format

–27672 shapeFill_not_allowed

–27671 inverseFill_face_must_set_clipLayer_flag

–27670 invalid_transferMode_colorSpace

–27669 colorProfile_must_be_nil

continued
About QuickDraw GX Errors, Warnings, and Notices 3-15

C H A P T E R 3

Errors, Warnings, and Notices
Table 3-20 lists the QuickDraw GX restricted access debugging errors.

–27668 bitmap_pixel_size_must_be_1

–27667 empty_shape_not_allowed

–27666 ignorePlatformShape_not_allowed

–27665 nil_style_in_glyph_not_allowed

–27664 complex_glyph_style_not_allowed

–27663 invalid_mapping

–27662 cannot_set_item_shapes_to_nil

–27661 cannot_use_original_item_shapes_when_growing_picture

–27660 cannot_add_unspecified_new_glyphs

–27659 cannot_dispose_locked_tag

–27658 cannot_dispose_locked_shape

Table 3-20 Restricted access debugging errors

Number Name

–27657 shape_access_not_allowed

–27656 colorSet_access_restricted

–27655 colorProfile_access_restricted

–27654 tag_access_restricted

–27653 viewDevice_access_restricted

–27652 graphic_type_does_not_have_a_structure

–27651 style_run_array_does_not_match_number_of_characters

–27650 rectangles_cannot_be_inserted_into

–27649 unknown_graphics_heap

–27648 graphics_routine_selector_is_obsolete

–27647 cannot_set_graphics_client_memory_without_setting_size

–27646 graphics_client_memory_too_small

–27645 graphics_client_memory_is_already_allocated

–27644 viewPort_is_a_window

Table 3-19 Bad parameter debugging errors (continued)

Number Name
3-16 About QuickDraw GX Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
Table 3-21 lists the QuickDraw GX wrong type and bad reference debugging errors.

Table 3-21 Wrong type and bad reference debugging errors

Number Name

–27643 illegal_type_for_shape

–27642 shape_does_not_contain_a_bitmap

–27641 shape_does_not_contain_text

–27640 picture_expected

–27639 bitmap_is_not_resizable

–27638 shape_may_not_be_a_bitmap

–27637 shape__may_not_be_a_picture

–27636 graphic_type_does_not_contain_points

–27635 graphic_type_does_not_have_multiple_contours

–27634 graphic_type_cannot_be_mapped

–27633 graphic_type_cannot_be_moved

–27632 graphic_type_cannot_be_scaled

–27631 graphic_type_cannot_be_rotated

–27630 graphic_type_cannot_be_skewed

–27629 graphic_type_cannot_be_reset

–27628 graphic_type_cannot_be_dashed

–27627 graphic_type_cannot_be_reduced

–27626 graphic_type_cannot_be_inset

–27625 shape_cannot_be_inverted

–27624 shape_does_not_have_area

–27623 shape_does not_have_length

–27622 first_glyph_advance_must_be_absolute

–27621 picture_cannot_contain_itself

–27620 viewPort_cannot_contain_itself

–27619 cannot_set_unique_items_attribute_when_picture_contains_items

–27618 layer_style_cannot_contain_a_face

–27617 layer_glyph_shape_cannot_contain_nil_styles
About QuickDraw GX Errors, Warnings, and Notices 3-17

C H A P T E R 3

Errors, Warnings, and Notices
QuickDraw GX posts validation errors only when QuickDraw GX validation error
functions activate validation error checking. Validation error checking is discussed the
chapter “QuickDraw GX Debugging” in this book. Table 3-22 lists the type validation
debugging errors.

Table 3-23 lists the QuickDraw GX cache validation debugging errors.

Table 3-22 Type validation debugging errors

Number Name

–27616 object_wrong_type

–27615 shape_wrong_type

–27614 style_wrong_type

–27613 ink_wrong_type

–27612 transform_wrong_type

–27611 device_wrong_type

–27610 port_wrong_type

Table 3-23 Cache validation debugging errors

Number Name

–27609 shape_cache_wrong_type

–27608 style_cache_wrong_type

–27607 ink_cache_wrong_type

–27606 transform_cache_wrong_type

–27605 port_cache_wrong_type

–27604 shape_cache_parent_mismatch

–27603 style_cache_parent_mismatch

–27602 ink_cache_parent_mismatch

–27601 transform_cache_parent_mismatch

–27600 port_cache_parent_mismatch

–27599 invalid_shape_cache_port

–27598 invalid_shape_cache_device

–27597 invalid_ink_cache_port

–27596 invalid_ink_cache_device

–27595 invalid_style_cache_port
3-18 About QuickDraw GX Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
Table 3-24 lists the QuickDraw GX shape cache validation debugging errors.

Table 3-25 lists the QuickDraw GX memory block validation debugging errors.

–27594 invalid_style_cache_device

–27593 invalid_transform_cache_port

–27592 invalid_transform_cache_device

–27591 recursive_caches

Table 3-24 Shape cache validation shape debugging errors

Number Name

–27590 invalid_fillShape_ownerCount

–27589 recursive_fillShapes

Table 3-25 Memory block validation debugging errors

Number Name

–27588 indirect_memory_block_too_small

–27587 indirect_memory_block_too_large

–27586 unexpected_nil_pointer

–27585 bad_address

Table 3-23 Cache validation debugging errors (continued)

Number Name
About QuickDraw GX Errors, Warnings, and Notices 3-19

C H A P T E R 3

Errors, Warnings, and Notices
Table 3-26 lists the QuickDraw GX object validation debugging errors.

Table 3-27 lists the QuickDraw GX path and polygon validation debugging errors.

Table 3-28 lists the QuickDraw GX bitmap validation debugging errors.

Table 3-26 Object validation debugging errors

Number Name

–27584 no_owners

–27583 invalid_pointer

–27582 invalid_seed

–27581 invalid_frame_seed

–27580 invalid_text_seed

–27579 invalid_draw_seed

–27578 bad_printer_flags

Table 3-27 Path and polygon validation debugging errors

Number Name

–27577 invalid_vector_count

–27576 invalid_contour_count

Table 3-28 Bitmap validation debugging errors

Number Name

–27575 bitmap_ptr_too_small

–27574 bitmap_ptr_not_aligned

–27573 bitmap_rowBytes_negative

–27572 bitmap_width_negative

–27571 bitmap_height_negative

–27570 invalid_pixelSize

–27569 bitmap_rowBytes_too_small

–27568 bitmap_rowBytes_not_aligned

–27567 bitmap_rowBytes_must_be_specified_for_user_image_buffer
3-20 About QuickDraw GX Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
Table 3-29 lists the QuickDraw GX bitmap image validation debugging errors.

Table 3-30 lists the QuickDraw GX text validation debugging errors.

Table 3-31 lists the QuickDraw GX glyph validation debugging errors.

Table 3-29 Bitmap image validation debugging errors

Number Name

–27566 invalid_bitImage_fileOffset

–27565 invalid_bitImage_owners

–27564 invalid_bitImage_rowBytes

–27563 invalid_bitImage_internal_flag

Table 3-30 Text validation debugging errors

Number Name

–27562 text_bounds_cache_wrong_size

–27561 text_metrics_cache_wrong_size

–27560 text_index_cache_wrong_size

Table 3-31 Glyph validation debugging errors

Number Name

–27559 glyph_run_count_negative

–27558 glyph_run_count_zero

–27557 glyph_run_counts_do_not_sum_to_character_count

–27556 glyph_first_advance_bit_set_not_allowed

–27555 glyph_tangent_vectors_both_zero
About QuickDraw GX Errors, Warnings, and Notices 3-21

C H A P T E R 3

Errors, Warnings, and Notices
Table 3-32 lists the QuickDraw GX layout validation debugging errors.

Table 3-33 lists the QuickDraw GX picture validation debugging errors.

Table 3-34 lists the QuickDraw GX text face validation debugging errors.

Table 3-32 Layout validation debugging errors

Number Name

–27554 layout_run_length_negative

–27553 layout_run_length_zero

–27552 layout_run_level_negative

–27551 layout_run_lengths_do_not_sum_to_text_length

Table 3-33 Picture validation debugging errors

Number Name

–27550 bad_shape_in_picture

–27549 bad_style_in_picture

–27548 bad_ink_in_picture

–27547 bad_transform_in_picture

–27546 bad_shape_cache_in_picture

–27545 bad_seed_in_picture

–27544 invalid_picture_count

Table 3-34 Text face validation debugging errors

Number Name

–27543 bad_textLayer_count

–27542 bad_fillType_in_textFace

–27541 bad_style_in_textFace

–27540 bad_transform_in_textFace
3-22 About QuickDraw GX Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
Table 3-35 lists the QuickDraw GX transform validation debugging errors.

Table 3-36 lists the QuickDraw GX font cache validation debugging errors.

Table 3-35 Transform validation debugging errors

Number Name

–27539 invalid_matrix_flag

–27538 transform_clip_missing

Table 3-36 Font cache validation debugging errors

Number Name

–27537 metrics_wrong_type

–27536 metrics_point_size_probably_bad

–27535 scalar_block_wrong_type

–27534 scalar_block_parent_mismatch

–27533 scalar_block_too_small

–27532 scalar_block_too_large

–27531 invalid_metrics_range

–27530 invalid_metrics_flags

–27529 metrics_maxWidth_probably_bad

–27528 font_wrong_type

–27527 font_wrong_size

–27526 invalid_font_platform

–27525 invalid_lookup_range

–27524 invalid_lookup_platform

–27523 font_not_in_font_list

–27522 metrics_not_in_metrics_list
About QuickDraw GX Errors, Warnings, and Notices 3-23

C H A P T E R 3

Errors, Warnings, and Notices
Table 3-37 lists the QuickDraw GX view device validation debugging errors.

Table 3-38 lists the QuickDraw GX color set validation debugging errors.

Table 3-39 lists the QuickDraw GX color profile validation debugging errors.

Table 3-37 View device validation debugging errors

Number Name

–27521 bad_device_private_flags

–27520 bad_device_attributes

–27519 invalid_device_number

–27518 invalid_device_viewGroup

–27517 invalid_device_bounds

–27516 invalid_bitmap_in_device

Table 3-38 Color set validation debugging errors

Number Name

–27515 colorSet_wrong_type

–27514 invalid_colorSet_viewDevice_owners

–27513 invalid_colorSet_colorSpace

–27512 invalid_colorSet_count

Table 3-39 Color profile validation debugging errors

Number Name

–27511 colorProfile_wrong_type

–27510 invalid_colorProfile_flags

–27509 invalid_colorProfile_response_count
3-24 About QuickDraw GX Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
Table 3-40 lists the QuickDraw GX internal backing store validation debugging errors.

Warnings 3

This section describes the warnings that the debugging version of QuickDraw GX may
post. QuickDraw GX debugging warnings can be grouped into the following categories:

■ invalid data warnings

■ can’t find warnings

■ other warnings

Table 3-41 gives the range of debugging warning numbers.

Table 3-40 Internal backing store validation debugging errors

Number Name

–27508 backing_free_parent_mismatch

–27507 backing_store_parent_mismatch

Table 3-41 Debugging warning number range

Number Description

–26700 gxFirstSystemDebuggingWarning

–26000 gxLastSystemWarning
About QuickDraw GX Errors, Warnings, and Notices 3-25

C H A P T E R 3

Errors, Warnings, and Notices
Table 3-42 lists the QuickDraw GX invalid data debugging warnings.

Table 3-43 lists the QuickDraw GX can’t find debugging warnings.

Table 3-42 Invalid data debugging warnings

Number Name

–26700 new_shape_contains_invalid_data

–26699 new_tag_contains_invalid_data

–26698 extra_data_passed_was_ignored

–26697 font_table_not_found

–26696 font_name_not_found

–26695 unable_to_traverse_open_contour_that_starts_or_ends_off_the_curve

–26694 unable_to_draw_open_contour_that_starts_or_ends_off_the_curve

–26693 cannot_dispose_default_shape

–26692 cannot_dispose_default_style

–26691 cannot_dispose_default_ink

–26690 cannot_dispose_default_transform

–26689 cannot_dispose_default_colorProfile

–26688 cannot_dispose_default_colorSet

–26687 shape_direct_attribute_not_set

Table 3-43 Can’t find debugging warnings

Number Name

–26686 point_does_not_intersect_port

–26685 cannot_dispose_non_font

–26684 face_override_style_font_must_match_style

–26683 union_of_area_and_and_length_returns_area_only

–26682 insufficient_coordinate_space_for_new_device
3-26 About QuickDraw GX Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
Table 3-44 lists the QuickDraw GX other debugging warnings.

Notices 3

QuickDraw GX provides notices only in the debugging version. This section describes
the notices that the debugging version of QuickDraw GX may post. Each QuickDraw
notice has a unique notice number and a notice name. Table 3-45 gives the debugging
notice number range.

Table 3-46 lists the QuickDraw GX debugging notices.

Table 3-44 Other debugging warnings

Number Name

–26681 shape_passed_has_no_bounds

–26680 tags_of_type_flst_removed

–26679 translator_not_installed_on_this_grafport

Table 3-45 Debugging version notice number summary

Number Description

–25999 gxFirstSystemNotice

–25500 gxLastSystemNotice

Table 3-46 Debugging notices

Number Name

–25999 parameters_have_no_effect

–25998 attributes_already_set

–25997 caps_already_set

–25996 clip_already_set

–25995 color_already_set

–25994 curve_error_already_set

–25993 dash_already_set

–25992 default_colorProfile_already_set

–25991 default_ink_already_set

–25990 default_transform_already_set

continued
About QuickDraw GX Errors, Warnings, and Notices 3-27

C H A P T E R 3

Errors, Warnings, and Notices
–25989 default_shape_already_set

–25988 default_style_already_set

–25987 dither_already_set

–25986 encoding_already_set

–25985 face_already_set

–25984 fill_already_set

–25983 font_already_set

–25982 font_variations_already_set

–25981 glyph_positions_are_already_set

–25980 glyph_tangents_are_already_set

–25979 halftone_already_set

–25978 hit_test_already_set

–25977 ink_already_set

–25976 join_already_set

–25975 justification_already_set

–25974 mapping_already_set

–25973 pattern_already_set

–25972 pen_already_set

–25971 style_already_set

–25970 tag_already_set

–25969 text_attributes_already_set

–25968 text_size_already_set

–25967 transfer_already_set

–25966 translator_already_installed_on_this_grafport

–25965 transform_already_set

–25964 type_already_set

–25963 validation_level_already_set

–25962 viewPorts_already_set

–25961 viewPorts_already_in_viewGroup

–25960 viewDevice_already_in_viewGroup

–25959 geometry_unaffected

–25958 mapping_unaffected

Table 3-46 Debugging notices (continued)

Number Name
3-28 About QuickDraw GX Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
–25957 tags_in_shape_ignored

–25956 shape_already_in_primitive_form

–25955 shape_already_in_simple_form

–25954 shape_already_broken

–25953 shape_already_joined

–25952 cache_already_cleared

–25951 shape_not_disposed

–25950 style_not_disposed

–25949 ink_not_disposed

–25948 transform_not_disposed

–25947 colorSet_not_disposed

–25946 colorProfile_not_disposed

–25945 font_not_disposed

–25944 glyph_tangents_have_no_effect

–25943 glyph_positions_determined_by_advance

–25942 transform_viewPorts_already_set

–25941 directShape_attribute_set_as_side_effect

–25940 lockShape_called_as_side_effect

–25939 lockTag_called_as_side_effect

–25938 shapes_unlocked_as_side_effect

–25937 shape_not_locked

–25936 tag_not_locked

–25935 disposed_dead_caches

–25934 disposed_live_caches

–25933 low_on_memory

–25932 very_low_on_memory

–25931 transform_references_disposed_viewPort

Table 3-46 Debugging notices (continued)

Number Name
About QuickDraw GX Errors, Warnings, and Notices 3-29

C H A P T E R 3

Errors, Warnings, and Notices
Using Errors, Warnings, and Notices 3

This section describes how to control and utilize QuickDraw GX errors, warnings, and
notices and how to include an application-defined function to provide complementary
or alternative error, warning, and notice processing. This section describes how you can

■ obtain the QuickDraw GX errors, warnings, and notices posted

■ change the QuickDraw GX errors, warnings, and notices posted

■ ignore QuickDraw GX warnings and notices

■ install application-defined error, warning, and notice handlers

Obtaining Errors, Warnings, and Notices 3
You can use the GXGetGraphicsError, GXGetGraphicsWarning, and
GXGetGraphicsNotice functions to obtain QuickDraw GX error, warning, and notice
messages describing problems that occur during the execution of your application. These
three functions return the last problem encountered during execution. If no problem has
been posted, the function returns 0 until a problem message is posted.

The stickyError, stickyWarning, or stickyNotice parameters of the respective
function, if not nil, are pointers to the first execution problem that QuickDraw GX
encountered after the last time that the GXGetGraphicsError,
GXGetGraphicsWarning, or GXGetGraphicsNotice function was called. These
functions thereby allow you to determine both the original problem and the final
problem that was detected by QuickDraw GX during execution of your application.

Note
Notices are posted only in the debugging version of QuickDraw GX. ◆
3-30 Using Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
Figure 3-2 shows the use of these polling functions to obtain the errors, warnings, and
notices of selected blocks of your code.

Figure 3-2 Polling for errors, warnings, and notices

Code block

Error check

Code block

Error check
Using Errors, Warnings, and Notices 3-31

C H A P T E R 3

Errors, Warnings, and Notices
Figure 3-3 shows the use of the GXGetGraphicsError function to obtain the first and
last errors posted when you test your QuickDraw GX application.

Figure 3-3 Obtaining the first and last posted QuickDraw GX error

QuickDraw GX application

GXGetGraphicsError()

Posted errors

First error

Error

Error

Error

Error

Last error

Errors obtained by

GXGetGraphicsError()

First error

Last error
3-32 Using Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
Listing 3-1 shows the use of the GXGetGraphicsError function to obtain the first error
posted after the execution of a block of code.

Listing 3-1 Obtaining the first posted error

static void ObtainOriginalError(void)

{

/* block of application code */

/*

If an error occurred, then see if the orginal error was

out_of_memory. Note that you need to look at the original error,

not the last error returned, since if the NewLine fails, then the

next two functions (DrawShape and DisposeShape) will generate a

shape_is_nil error.

*/

{ graphicsError myError, originalError;

if(myError = GetGraphicsError(&originalError)) {

if(originalError == out_of_memory) {

/* post out of memory dialog box */

} else {

/* post generic error dialog box */

}

}

}

}

Using Errors, Warnings, and Notices 3-33

C H A P T E R 3

Errors, Warnings, and Notices
Listing 3-2 shows the use of the GXGetGraphicsWarning function to obtain the first
and last warning posted after the execution of a block of code.

Listing 3-2 Obtaining the first and last QuickDraw GX warning

static void ObtainFirstLastWarning(void)

{

/* block of application code */

/*

It might be valuable to look at both myWarning (last warning

posted) and originalWarning (first warning posted), although the

last warning is usually the most important warning posted.

*/

{ graphicsWarning myWarning, originalWarning;

if(myWarning = GXGetGraphicsWarning(&originalWarning)) {

DebugStr("\pa warning occurred");

}

}

}

Listing 3-3 shows the use of the GXGetGraphicsNotice function to obtain the first and
last notices posted after the execution of a block of code.

Listing 3-3 Obtaining the first and last posted notices

static void ObtainFirstLastNotice(void)

{

/* block of application code */

/*

It might be useful to look at both myNotice (last notice

posted)and originalNotice (first notice posted), although the

last notice is usually the most important notice posted.

*/
3-34 Using Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
{ graphicsNotice myNotice, originalNotice;

if(myNotice = GXGetGraphicsNotice(&originalNotice)) {

DebugStr("\pa notice occurred");

}

}

}

The GXGetGraphicsError function is described on page 3-56. The QuickDraw GX
errors that may be posted are listed in the section “Errors” beginning on page 3-6.
QuickDraw GX allows you to ignore warnings and notices, but does not provide a
function that will ignore errors.

The GXGetGraphicsWarning function is described on page 3-60. The QuickDraw GX
warnings that may be posted are listed in the section “Warnings” beginning on
page 3-10. QuickDraw GX allows you to ignore warnings that would otherwise be
posted. How to ignore warnings is discussed in the section “Ignoring Warnings and
Notices” beginning on page 3-37. The GXIgnoreGraphicsWarning function is
discussed on page 3-64.

The GXGetGraphicsNotice function is described on page 3-66. The QuickDraw GX
notices that may be posted are listed in the section “Notices” beginning on page 3-27.
QuickDraw GX allows you to ignore notices that would otherwise be posted. How to
ignore notices is discussed in the section “Ignoring Warnings and Notices” beginning on
page 3-37. The GXIgnoreGraphicsNotice function is discussed on page 3-70.

Note
An alternative or complementary approach to the use of
the GXGetGraphicsError, GXGetGraphicsWarning, and
GXGetGraphicsNotice functions is to include an application-defined
error, warning, or notice handler. This topic is discussed in the section
“Installing an Error, Warning, or Notice Handler” beginning on
page 3-40. ◆

Changing the Error, Warning, or Notice Posted 3
You can use the GXPostGraphicsError, GXPostGraphicsWarning, and
GXPostGraphicsNotice functions to post your own errors, warnings, and notices
from inside your application.

Note
Notices are posted only in the debugging version of QuickDraw GX. ◆

The GXPostGraphicsError function replaces the current QuickDraw GX error with
any error message you provide as the error parameter. The error you substitute may be
one of the QuickDraw GX errors or your own error message. This function stores the
new error message so that subsequent calls to GXGetGraphicsError return the error
substituted by this function.
Using Errors, Warnings, and Notices 3-35

C H A P T E R 3

Errors, Warnings, and Notices
Listing 3-4 shows the use of the GXPostGraphicsError function to change the posted
error to an error having the name special_user_error and the error number
2097152. This is the gxFirstAppError constant.

Listing 3-4 Changing the error posted

static long SampleCode4(void)

{

#define special_user_error 2097152L

#define end_of_file -1L

long myFilePosition = 0;

/* block of application code */

if(myFilePosition == end_of_file) {

/* indicate that an error occurred */

PostGraphicsError(special_user_error);

}

/* block of application code */

/*

You need to check for errors only once; this will catch errors

generated by QuickDraw GX and any user-defined errors that were

posted.

*/

{ graphicsError myError;

if(myError = GXGetGraphicsError(nil))

return myError;

}

/* block of application code */

}

The GXPostGraphicsError function is described on page 3-57. The QuickDraw GX
errors are listed in the section “Errors” beginning on page 3-6.
3-36 Using Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
The GXPostGraphicsWarning function replaces the current QuickDraw GX warning
with any warning message you provide as the warning parameter. The warning you
substitute may be one of the QuickDraw GX warnings or your own warning message.
This function stores the new warning message so that subsequent calls to
GXGetGraphicsWarning return the warning substituted by this function.

The GXPostGraphicsWarning function is described on page 3-61. The QuickDraw GX
warnings are listed in the section “Warnings” beginning on page 3-10.

The GXPostGraphicsNotice function replaces the current QuickDraw GX notice with
any notice message you provide as the notice parameter. The notice you substitute
may be one of the QuickDraw GX notices or your own notice message. This function
stores the new notice message so that subsequent calls to GXGetGraphicsNotice
return the notice substituted by this function.

The GXPostGraphicsNotice function is described on page 3-67. The QuickDraw GX
notices are listed in the section “Notices” beginning on page 3-27.

Ignoring Warnings and Notices 3
You can use the GXIgnoreGraphicsWarning and GXIgnoreGraphicsNotice
functions to selectively ignore, and thereby suppress, the posting of specific QuickDraw
GX warnings and notices in parts of your application. There is no analogous function to
ignore errors.

Note
Notices are posted only in the debugging version of QuickDraw GX. ◆

The GXIgnoreGraphicsWarning function places the warning to be ignored on the
ignore warning stack. The posting of all QuickDraw GX warnings that are on the ignore
warning stack is suppressed, just as if the problem that resulted in the warning message
never occurred.

When a QuickDraw GX warning is about to be posted, QuickDraw GX determines if the
specific warning is on the ignore warning stack. If the warning to be posted is on the
stack, QuickDraw GX does not post this warning. If the warning to be posted is not on
the ignore warning stack, QuickDraw GX does post the warning. QuickDraw GX does
not change the stack when it checks for the presence or absence of a warning.

The GXPopGraphicsWarning function removes warnings from the ignore warning
stack in the reverse order that they are placed on the stack by the
GXIgnoreGraphicsWarning function. You don’t need to specify which warning to
remove. You remove one ignored warning code from the top of the ignore warning stack
each time that you call the GXPopGraphicsWarning function.
Using Errors, Warnings, and Notices 3-37

C H A P T E R 3

Errors, Warnings, and Notices
Note
There is an implementation limit on the number of times that you can
use the GXIgnoreGraphicsWarning and GXPopGraphicsWarning
functions. When the implementation limit is exceeded, QuickDraw GX
posts a warning_stack_overflow warning message. If there are no
warnings on the ignore warning stack and the
GXPopGraphicsWarning function is called, QuickDraw GX posts a
warning_stack_underflow warning message. ◆

Since there is an implementation limit on the number of warnings and notices that you
can ignore, you should use the GXIgnoreGraphicsWarning and
GXPopGraphicsWarning functions only when you need to debug specific parts of
your application code.

The GXIgnoreGraphicsNotice function provides the same feature for notices that the
GXIgnoreGraphicsWarning function provides for warnings.

The GXIgnoreGraphicsNotice function places the notice to be ignored on the ignore
notice stack. The posting of all QuickDraw GX notices on the ignore notice stack is
suppressed, just as if the problem that resulted in the notice message never occurred.

When a QuickDraw GX notice is about to be posted, QuickDraw GX determines if the
specific notice is on the ignore notice stack. If the notice to be posted is on the stack,
QuickDraw GX does not post this notice. If the notice to be posted is not on the ignore
notice stack, QuickDraw GX does post it. QuickDraw GX does not change the stack
when it checks for the presence or absence of a notice.

The GXPopGraphicsNotice function removes notices from the ignore notice stack in
the reverse order that they are placed on the stack by the GXIgnoreGraphicsNotice
function. You don’t need to specify which notice to remove. You remove one ignored
notice code from the top of the ignore notice stack each time you call the
GXPopGraphicsNotice function.

Note
There is an implementation limit on the number of times that you can
use the GXIgnoreGraphicsNotice and GXPopGraphicsNotice
functions. When the implementation limit is exceeded, QuickDraw GX
will post a notice_stack_overflow warning message. If there are no
notices on the notice warning stack and the GXPopGraphicsNotice
function is called, QuickDraw GX posts a notice_stack_underflow
warning message. ◆

For example, if you wanted to suppress the attributes_already_set notice posted
by QuickDraw GX, you could use the GXIgnoreGraphicsNotice function to push its
notice number, –25998, onto the ignore notice stack. When QuickDraw GX is about to
post a notice, it looks on the ignore notice stack to determine if its notice number is on
the ignore notice stack. If the notice to be posted is attributes_already_set, then
the notice is not posted. QuickDraw GX posts any notice that is not on the ignore notice
stack.
3-38 Using Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
If you also wanted to ignore the color_already_set notice, then you could use the
GXIgnoreGraphicsNotice function to push its notice number, –25995, onto the ignore
notice stack. QuickDraw GX would then ignore, and therefore not post, the
attributes_already_set and color_already_set notices. Since you added the
notices to the ignore notice stack in the order attributes_already_set and then
color_already_set, the color_already_set notice would be on top of the ignore
notice stack. When you use the GXPopGraphicsNotice function to remove a notice
from the stack, the first notice to be removed is color_already_set, the one on top of
the ignore notice stack. To remove the attributes_already_set notice, you need to
call the GXPopGraphicsNotice function a second time. After the second call to the
GXPopGraphicsNotice function, no notices are on the ignore notice stack. As a result,
QuickDraw GX resumes posting all notices.

Figure 3-4 illustrates how warnings and notices are added to and removed from the
ignore warning stack and the ignore notice stack.

Figure 3-4 Adding and removing warnings and notices from the ignore warning and ignore
notice stacks

You should ignore warnings and notices only if you are confident that you understand
why they are being issued and the consequences of ignoring these warnings and notices.

For example, if your program asks for 100 points in a polygon and there are fewer points
available, QuickDraw GX posts a warning and returns all of the points that are available.
You can add the GXIgnoreGraphicsNotice function to your code to suppress this
warning, but your application needs to be smart enough to accommodate the fact that
less than the requested number of points may be returned.

Ignore warning stack

GXIgnoreWarning(Warning 1)

Ignore notice stack

No warnings

Warning 1

Warning 2

GXIgnoreWarning(Warning 2)

Warning 1

GXPopGraphicsWarning

Warning 1

GXPopGraphicsWarning

No warnings

GXIgnoreNotice(Notice 1)

No notices

Notice 1

Notice 2

GXIgnoreNotice(Notice 2)

Notice 1

GXPopGraphicsNotice

Notice 1

GXPopGraphicsNotice

No notices
Using Errors, Warnings, and Notices 3-39

C H A P T E R 3

Errors, Warnings, and Notices
The GXIgnoreGraphicsWarning function is discussed on page 3-64. The
GXPopGraphicsWarning function is discussed on page 3-65. The QuickDraw warning
names and numbers that may be ignored are listed in the section “Warnings” beginning
on page 3-10.

The GXIgnoreGraphicsNotice function is discussed on page 3-70. The
GXPopGraphicsNotice function is discussed on page 3-71. The QuickDraw GX
warning names and numbers that can be ignored are listed in the section “Notices”
beginning on page 3-27.

Installing an Error, Warning, or Notice Handler 3
You can use the GXSetUserGraphicsError, GXSetUserGraphicsWarning, and
GXSetUserGraphicsNotice functions to install an application-defined function that
you want to call whenever an error, warning, or notice occurs. QuickDraw GX will pass
this function the error, warning, or notice when it is generated. Your function can then
respond accordingly. You may use the reference argument to pass an associated long
value parameter to your function. If you want to disable your handler, you just pass nil.

Your application can then take advantage of these errors. For example, QuickDraw GX
may post an error indicating that your application has run out of memory or has tried to
use a font that is not installed. As a result, your application may be able to recommend
corrective action via the application-defined error handling function and the
application’s human interface.

You can use the GXGetUserGraphicsError, GXGetUserGraphicsWarning, and
GXGetUserGraphicsNotice functions to obtain the application-defined handler
functions that have been previously installed by GXSetUserGraphicsError,
GXSetUserGraphicsWarning, and SetUserGraphicsNotices. These functions
return nil if no function has been installed.

You usually install handlers at the beginning of your application code. You can install
error, warning, and notice handlers before any graphics operations have occurred and
before the GXEnterGraphics function has been called. If you do, QuickDraw GX will
call the GXEnterGraphics function for you. In contrast, you can’t install error,
warning, and notice handlers before calling the GXNewGraphicsClient function.

Alternatively, you may selectively enable and disable error, warning, and notice handlers
at different sections of the application code. Figure 3-5 shows how an error handler can
be enabled and disabled within the application. This is an effective method for ignoring
errors, warnings, and notices, analogous to the use of the GXIgnoreGraphicsError,
GXIgnoreGraphicsWarning, and GXIgnoreGraphicsNotice functions.
3-40 Using Errors, Warnings, and Notices

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
Figure 3-5 Enabling and disabling an error handler

The handler should respond to the problems that occur during typical application
scenarios. A friendly application should let the user know when it is taking action in
response to errors and warnings that have occurred. For example, if an application runs
out of memory, it may let the user know that it is out of memory and that it is
responding in a particular manner to alleviate the problem. If it cannot solve the
problem, it may need to notify the user that it needs to abort processing. Such an
application would need to install an error handler that looks for out_of_memory errors.

In general, in the non-debugging version of your application, the handler might be
relatively simple. If the handler doesn’t have a response to an error or warning, it should
just return and continue execution.

In contrast, the debugging version of the handler may be relatively complex to
accommodate special error, warning, and notice conditions. In general, you should stop
and print the errors, warnings, and notices whenever a problem occurs.

An application can have more than one error handler. A simple application might have
just one error handler to handle specific problems. However, a more complicated
application may have multiple error handlers. For example, an application might have
one error handler that takes care of memory problems and another error handler for
other types of errors. The special error handler may be installed only when a particular
type of processing is to occur, like animation or QuickTime movies.

Install

error handler

Code block

Code block

Remove

error handler

Error handler
Using Errors, Warnings, and Notices 3-41

C H A P T E R 3

Errors, Warnings, and Notices
Errors, Warnings, and Notices Reference 3

This section provides reference information related to the data types and functions that
allow you to control the generation of errors, warnings, and notices.

Constants and Data Types 3
This section describes the error, warning, and notice data types that you may use in your
application.

Errors 3

QuickDraw GX provides you with an extended set of errors in the debugging version
and a reduced set of errors in the non-debugging version. Each QuickDraw GX error
constant has an error number described by the gxGraphicsError type definition and
the gxGraphicErrors enumeration:

typedef long gxGraphicsError;

enum gxGraphicErrors {

/* truly fatal errors */

out_of_memory = -27999,

internal_fatal_error,

no_outline_font_found,

not_enough_memory_for_graphics_client_heap,

could_not_create_backing_store,

/* internal errors */

internal_error = -27950,

internal_font_error,

internal_layout_error,

/* recoverable errors */

could_not_dispose_backing_store = internal_layout_error + 2,

unflattening_interrupted_by_client,

/* font manager errors */

font_cannot_be_changed,

illegal_font_parameter,
3-42 Errors, Warnings, and Notices Reference

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
/* gxFont scaler errors */

null_font_scaler_context = -27900,

null_font_scaler_input,

invalid_font_scaler_context,

invalid_font_scaler_input,

invalid_font_scaler_font_data,

font_scaler_newblock_failed,

font_scaler_getfonttable_failed,

font_scaler_bitmap_allocation_failed,

font_scaler_outline_allocation_failed,

required_font_scaler_table_missing,

unsupported_font_scaler_outline_format,

unsupported_font_scaler_stream_format,

unsupported_font_scaler_font_format,

font_scaler_hinting_error,

font_scaler_rasterizer_error,

font_scaler_internal_error,

font_scaler_invalid_matrix,

font_scaler_fixed_overflow,

font_scaler_api_version_mismatch,

font_scaler_streaming_aborted,

unknown_font_scaler_error,

/* bad parameters */

parameter_is_nil = -27850,

shape_is_nil,

style_is_nil,

transform_is_nil,

ink_is_nil,

transferMode_is_nil,

color_is_nil,

colorProfile_is_nil,

colorSet_is_nil,

spoolProcedure_is_nil,

tag_is_nil,

type_is_nil,

mapping_is_nil,

invalid_viewDevice_reference,

invalid_viewGroup_reference,

invalid_viewPort_reference,

/* implementation limits */

number_of_contours_exceeds_implementation_limit = -27800,
Errors, Warnings, and Notices Reference 3-43

C H A P T E R 3

Errors, Warnings, and Notices
number_of_points_exceeds_implementation_limit,

size_of_polygon_exceeds_implementation_limit,

size_of_path_exceeds_implementation_limit,

size_of_text_exceeds_implementation_limit,

size_of_bitmap_exceeds_implementation_limit,

number_of_colors_exceeds_implementation_limit,

procedure_not_reentrant

#ifdef debugging

,

/* internal debugging errors: following available only in */

/* the debugging init */

functionality_unimplemented = -27700,

clip_to_frame_shape_unimplemented,

/* font parameter debugging errors */

illegal_font_storage_type,

illegal_font_storage_reference,

illegal_font_attributes,

/* parameter debugging errors */

parameter_out_of_range,

inconsistent_parameters,

index_is_less_than_zero,

index_is_less_than_one,

count_is_less_than_zero,

count_is_less_than_one,

contour_is_less_than_zero,

length_is_less_than_zero,

invalid_client_reference,

invalid_graphics_heap_start_pointer,

invalid_nongraphic_globals_pointer,

colorSpace_out_of_range,

pattern_lattice_out_of_range,

frequency_parameter_out_of_range,

tinting_parameter_out_of_range,

method_parameter_out_of_range,

space_may_not_be_indexed,
3-44 Errors, Warnings, and Notices Reference

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
glyph_index_too_small,

no_glyphs_added_to_font,

glyph_not_added_to_font,

point_does_not_intersect_bitmap,

required_font_table_not_present,

unknown_font_table_format,

/* the styles encoding is not present in the font */

shapeFill_not_allowed,

inverseFill_face_must_set_clipLayer_flag,

invalid_transferMode_colorSpace,

colorProfile_must_be_nil,

bitmap_pixel_size_must_be_1,

empty_shape_not_allowed,

ignorePlatformShape_not_allowed,

nil_style_in_glyph_not_allowed,

complex_glyph_style_not_allowed,

invalid_mapping,

cannot_set_item_shapes_to_nil,

cannot_use_original_item_shapes_when_growing_picture,

cannot_add_unspecified_new_glyphs,

cannot_dispose_locked_tag,

cannot_dispose_locked_shape,

/* restricted access */

shape_access_not_allowed,

colorSet_access_restricted,

colorProfile_access_restricted,

tag_access_restricted,

viewDevice_access_restricted,

graphic_type_does_not_have_a_structure,

style_run_array_does_not_match_number_of_characters,

rectangles_cannot_be_inserted_into,

unknown_graphics_heap,

graphics_routine_selector_is_obsolete,

cannot_set_graphics_client_memory_without_setting_size,

graphics_client_memory_too_small,

graphics_client_memory_is_already_allocated,
Errors, Warnings, and Notices Reference 3-45

C H A P T E R 3

Errors, Warnings, and Notices
viewPort_is_a_window,

/* wrong type/bad reference */

illegal_type_for_shape,

shape_does_not_contain_a_bitmap,

shape_does_not_contain_text,

picture_expected,

bitmap_is_not_resizable,

shape_may_not_be_a_bitmap,

shape_may_not_be_a_picture,

graphic_type_does_not_contain_points,

graphic_type_does_not_have_multiple_contours,

graphic_type_cannot_be_mapped,

graphic_type_cannot_be_moved,

graphic_type_cannot_be_scaled,

graphic_type_cannot_be_rotated,

graphic_type_cannot_be_skewed,

graphic_type_cannot_be_reset,

graphic_type_cannot_be_dashed,

graphic_type_cannot_be_reduced,

graphic_type_cannot_be_inset,

shape_cannot_be_inverted,

shape_does_not_have_area,

shape_does_not_have_length,

first_glyph_advance_must_be_absolute,

picture_cannot_contain_itself,

viewPort_cannot_contain_itself,

cannot_set_unique_items_attribute_when_picture_

contains_items,

layer_style_cannot_contain_a_face,

layer_glyph_shape_cannot_contain_nil_styles,

/* validation errors */

object_wrong_type,

shape_wrong_type,

style_wrong_type,

ink_wrong_type,

transform_wrong_type,

device_wrong_type,

port_wrong_type,
3-46 Errors, Warnings, and Notices Reference

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
/*cache validation errors */

shape_cache_wrong_type,

style_cache_wrong_type,

ink_cache_wrong_type,

transform_cache_wrong_type,

port_cache_wrong_type,

shape_cache_parent_mismatch,

style_cache_parent_mismatch,

ink_cache_parent_mismatch,

transform_cache_parent_mismatch,

port_cache_parent_mismatch,

invalid_shape_cache_port,

invalid_shape_cache_device,

invalid_ink_cache_port,

invalid_ink_cache_device,

invalid_style_cache_port,

invalid_style_cache_device,

invalid_transform_cache_port,

invalid_transform_cache_device,

recursive_caches,

/*shape cache validation errors */

invalid_fillShape_ownerCount,

recursive_fillShapes,

/*memory block validation errors */

indirect_memory_block_too_small,

indirect_memory_block_too_large,

unexpected_nil_pointer,

bad_address,

/* object validation errors */

no_owners,

invalid_pointer,

invalid_seed,

invalid_frame_seed,

invalid_text_seed,

invalid_draw_seed,

bad_private_flags,

/* path and polygon validation errors */

invalid_vector_count,

invalid_contour_count,
Errors, Warnings, and Notices Reference 3-47

C H A P T E R 3

Errors, Warnings, and Notices
/* validation bitmap errors */

bitmap_ptr_too_small,

bitmap_ptr_not_aligned,

bitmap_rowBytes_negative,

bitmap_width_negative,

bitmap_height_negative,

invalid_pixelSize,

bitmap_rowBytes_too_small,

bitmap_rowBytes_not_aligned,

bitmap_rowBytes_must_be_specified_for_user_image_buffer,

/* bitmap validation image errors */

invalid_bitImage_fileOffset,

invalid_bitImage_owners,

invalid_bitImage_rowBytes,

invalid_bitImage_internal_flag,

/* text validation errors */

text_bounds_cache_wrong_size,

text_metrics_cache_wrong_size,

text_index_cache_wrong_size,

/* glyph validation errors */

glyph_run_count_negative,

glyph_run_count_zero,

glyph_run_counts_do_not_sum_to_character_count,

glyph_first_advance_bit_set_not_allowed,

glyph_tangent_vectors_both_zero,

/* layout validation errors */

layout_run_length_negative,

layout_run_length_zero,

layout_run_level_negative,

layout_run_lengths_do_not_sum_to_text_length,

/* picture validation errors */

bad_shape_in_picture,

bad_style_in_picture,

bad_ink_in_picture,

bad_transform_in_picture,

bad_shape_cache_in_picture,

bad_seed_in_picture,

invalid_picture_count,
3-48 Errors, Warnings, and Notices Reference

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
/* text face validation errors */

bad_textLayer_count,

bad_fillType_in_textFace,

bad_style_in_textFace,

bad_transform_in_textFace,

/* transform validation errors */

invalid_matrix_flag,

transform_clip_missing,

/* font cache validation errors */

metrics_wrong_type,

metrics_point_size_probably_bad,

scalar_block_wrong_type,

scalar_block_parent_mismatch,

scalar_block_too_small,

scalar_block_too_large,

invalid_metrics_range,

invalid_metrics_flags,

metrics_maxWidth_probably_bad,

font_wrong_type,

font_wrong_size,

invalid_font_platform,

invalid_lookup_range,

invalid_lookup_platform,

font_not_in_font_list,

metrics_not_in_metrics_list,

/* view device validation errors */

bad_device_private_flags,

bad_device_attributes,

invalid_device_number,

invalid_device_viewGroup,

invalid_device_bounds,

invalid_bitmap_in_device,

/* color set validation errors */

colorSet_wrong_type,

invalid_colorSet_viewDevice_owners,

invalid_colorSet_colorSpace,

invalid_colorSet_count,
Errors, Warnings, and Notices Reference 3-49

C H A P T E R 3

Errors, Warnings, and Notices
/* color profile validation errors */

colorProfile_wrong_type,

invalid_colorProfile_flags,

invalid_colorProfile_response_count,

/* internal backing store validation errors */

backing_free_parent_mismatch,

backing_store_parent_mismatch

#endif

};

QuickDraw GX non-debugging errors are listed in the section “Errors” beginning on
page 3-6. Debugging errors are listed in the section “Errors” beginning on page 3-6.

Warnings 3

QuickDraw GX provides you with an extended set of warnings in the debugging version
and a reduced set of warnings in the non-debugging version. Each QuickDraw GX
warning has a warning number described by the gxGraphicsWarning type definition
and the gxGraphicWarnings enumeration:

typedef long gxGraphicsWarning;

enum gxGraphicWarnings {

/* warnings about warnings */

warning_stack_underflow = -26999,

warning_stack_overflow,

notice_stack_underflow,

notice_stack_overflow,

about_to_grow_heap,

about_to_unload_objects,

/* result went out of range */

map_shape_out_of_range = -26950,

move_shape_out_of_range,

scale_shape_out_of_range,

rotate_shape_out_of_range,

skew_shape_out_of_range,

map_transform_out_of_range,

move_transform_out_of_range,

scale_transform_out_of_range,

rotate_transform_out_of_range,

skew_transform_out_of_range,

map_points_out_of_range,
3-50 Errors, Warnings, and Notices Reference

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
/* gave a parameter out of range */

contour_out_of_range = -26900,

index_out_of_range_in_contour,

picture_index_out_of_range,

color_index_requested_not_found,

colorSet_index_out_of_range,

index_out_of_range,

count_out_of_range,

length_out_of_range,

font_table_index_out_of_range,

font_glyph_index_out_of_range,

point_out_of_range,

profile_response_out_of_range,

/* gxFont scaler warnings */

font_scaler_no_output = -26850,

font_scaler_fake_metrics,

font_scaler_fake_linespacing,

font_scaler_glyph_substitution,

font_scaler_no_kerning_applied,

/* might not be what you expected */

character_substitution_took_place,

unable_to_get_bounds_on_multiple_devices,

font_language_not_found,

font_not_found_during_unflattening,

/*storage */

unrecognized_stream_version,

bad_data_in_stream

#ifdef debugging

/*available only in debugging init */

,

/* nonsense data */

new_shape_contains_invalid_data = -26700,

new_tag_contains_invalid_data,

extra_data_passed_was_ignored,

font_table_not_found,

font_name_not_found,
Errors, Warnings, and Notices Reference 3-51

C H A P T E R 3

Errors, Warnings, and Notices
/* doesn't make sense to do */

unable_to_traverse_open_contour_that_starts_or_

ends_off_the_curve,

unable_to_draw_open_contour_that_starts_or_ends_

off_the_curve,

cannot_dispose_default_shape,

cannot_dispose_default_style,

cannot_dispose_default_ink,

cannot_dispose_default_transform,

cannot_dispose_default_colorProfile,

cannot_dispose_default_colorSet,

shape_direct_attribute_not_set,

/* couldn't find what you were looking for */

point_does_not_intersect_port,

cannot_dispose_non_font,

face_override_style_font_must_match_style,

union_of_area_and_length_returns_area_only,

insufficient_coordinate_space_for_new_device,

/* other */

shape_passed_has_no_bounds,

tags_of_type_flst_removed,

translator_not_installed_on_this_grafport

#endif

};

Non-debugging warnings are listed in the section “Warnings” beginning on page 3-10.
Debugging warnings are listed in the section “Warnings” beginning on page 3-10.
3-52 Errors, Warnings, and Notices Reference

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
Notices 3

QuickDraw GX provides you with a set of notices in the debugging version, but no
notices in the non-debugging version. Each QuickDraw GX notice has a notice number
described by the gxGraphicsNotice type definition and the gxGraphicNotices
enumeration:

typedef long gxGraphicsNotice;

#ifdef debugging

enum gxGraphicNotices {

parameters_have_no_effect = -25999,

attributes_already_set,

caps_already_set,

clip_already_set,

color_already_set,

curve_error_already_set,

dash_already_set,

default_colorProfile_already_set,

default_ink_already_set,

default_transform_already_set,

default_shape_already_set,

default_style_already_set,

dither_already_set,

encoding_already_set,

face_already_set,

fill_already_set,

font_already_set,

font_variations_already_set,

glyph_positions_are_already_set,

glyph_tangents_are_already_set,

halftone_already_set,

hit_test_already_set,

ink_already_set,

join_already_set,

justification_already_set,

mapping_already_set,

pattern_already_set,

pen_already_set,

style_already_set,

tag_already_set,

text_attributes_already_set,

text_size_already_set,

transfer_already_set,
Errors, Warnings, and Notices Reference 3-53

C H A P T E R 3

Errors, Warnings, and Notices
translator_already_installed_on_this_grafport,

transform_already_set,

type_already_set,

validation_level_already_set,

viewPorts_already_set,

viewPort_already_in_viewGroup,

viewDevice_already_in_viewGroup,

geometry_unaffected,

mapping_unaffected,

tags_in_shape_ignored,

shape_already_in_primitive_form,

shape_already_in_simple_form,

shape_already_broken,

shape_already_joined,

cache_already_cleared,

shape_not_disposed,

style_not_disposed,

ink_not_disposed,

transform_not_disposed,

colorSet_not_disposed,

colorProfile_not_disposed,

font_not_disposed,

glyph_tangents_have_no_effect,

glyph_positions_determined_by_advance,

transform_viewPorts_already_set,

directShape_attribute_set_as_side_effect,

lockShape_called_as_side_effect,

lockTag_called_as_side_effect,

shapes_unlocked_as_side_effect,

shape_not_locked,

tag_not_locked,

disposed_dead_caches,

disposed_live_caches,

low_on_memory,

very_low_on_memory

transform_references_disposed_viewPort

};

Debugging notices are listed in the section “Notices” beginning on page 3-27.
3-54 Errors, Warnings, and Notices Reference

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
Error, Warning, and Notice Number Ranges 3

QuickDraw GX specifies the defined ranges of error, warning, and notice numbers. The
gxFirstAppError, gxLastAppError, gxFirstAppWarning, gxLastAppWarning,
gxFirstAppNotice, and gxLastAppNotice types define the allowable ranges for
application-defined errors, warnings, and notices.

#define gxFirstSystemError –27999

#define gxFirstFatalError –27999

#define gxLastFatalError –27951

#define gxFirstNonfatalError –27950

#define gxFirstFontScalerError –27900

#define gxLastFontScalerError –27851

#define gxFirstParameterError –27850

#define gxFirstImplementationLimitError –27800

#define gxFirstSystemDebuggingError –27700

#define gxLastSystemError –27000

#define gxFirstAppError 2097152

#define gxLastAppError 4194303

#define gxFirstSystemWarning –26999

#define gxFirstResultOutOfRangeWarning –26950

#define gxFirstParameterOutOfRangeWarning –26900

#define gxFirstFontScalerWarning –26850

#define gxFirstSystemDebuggingWarning –26700

#define gxLastSystemWarning –26000

#define gxFirstAppWarning 5242880

#define gxLastAppWarning 7340031

#define gxFirstSystemNotice –25999

#define gxLastSystemNotice –25500

#define gxFirstAppNotice 7602146

#define gxLastAppNotice 8388607
Errors, Warnings, and Notices Reference 3-55

C H A P T E R 3

Errors, Warnings, and Notices
Functions 3
This section describes the QuickDrawGX functions you can use to control the generation
of errors, warnings, and notices.

Error Posting and Handling 3

This section describes the QuickDraw GX functions you can use to

■ obtain the first and last QuickDraw GX errors posted

■ replace the current error name with another error name

■ install the application-defined error handler function

■ obtain the installed application-defined error handler function

GXGetGraphicsError 3

You can use the GXGetGraphicsError function to obtain the first and last QuickDraw
GX errors posted.

gxGraphicsError GXGetGraphicsError(gxGraphicsError *stickyError);

stickyError
On return, a pointer to the first error posted.

function result The last error posted.

DESCRIPTION

The GXGetGraphicsError function returns the last error posted, or 0 if no error has
been posted. This function clears the last error so that all calls to this function return 0
until an error is posted.

The stickyError parameter, if not nil, is a pointer to the first error posted since the
last call to the GXGetGraphicsError function. QuickDraw GX clears the
stickyError parameter at the end of every call to the GXGetGraphicsError
function.

SEE ALSO

The use of this function is described in the section “Obtaining Errors, Warnings, and
Notices” beginning on page 3-30. Non-debugging errors that may be posted are listed in
the section “Errors” beginning on page 3-6. Debugging errors that may be posted are
listed in the section “Errors” beginning on page 3-6.
3-56 Errors, Warnings, and Notices Reference

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
An alternative method of posting errors is to include an application-defined error
handler. This topic is described in the section “Installing an Error, Warning, or Notice
Handler” beginning on page 3-40.

The GXSetUserGraphicsError function is used to install the error handler and is
described on page 3-58.

GXPostGraphicsError 3

You can use the GXPostGraphicsError function to replace the current QuickDraw GX
error with another error.

void GXPostGraphicsError(gxGraphicsError error);

error The error to be posted.

DESCRIPTION

The GXPostGraphicsError function replaces the QuickDraw GX error about to be
posted with an error message defined by the error parameter. You may use the
QuickDraw GX errors or define your own error number and error name. This function
stores the error posted so that subsequent calls to the GXGetGraphicsError function
return the error substituted by this function.

The GXPostGraphicsError function is available only when the debugging version is
installed.

SPECIAL CONSIDERATIONS

The error number must be within the range defined by QuickDraw GX. This range is
bounded by error numbers –27999 through –27000, or is in the application range.

SEE ALSO

The use of this function is described in the section “Changing the Error, Warning, or
Notice Posted” beginning on page 3-35.

Non-debugging errors that can be replaced are listed in the section “Errors” beginning
on page 3-6. Non-debugging errors that can be replaced are listed in the section “Errors”
beginning on page 3-6.
Errors, Warnings, and Notices Reference 3-57

C H A P T E R 3

Errors, Warnings, and Notices
GXSetUserGraphicsError 3

You can use the GXSetUserGraphicsError function to install an error handling
function.

void GXSetUserGraphicsError(gxUserErrorFunction userFunction,

long reference);

userFunction
The application’s error handling function that is to be passed the error
code.

reference A long value that is passed each time an error occurs. This value can be
used by the application for any purpose.

DESCRIPTION

The GXSetUserGraphicsError function installs an application-defined error
handling function. This function installs a function pointer that is called whenever an
error is posted. Setting the userFunction parameter to nil removes the error
handling function.

The userFunction parameter points to an application-defined error handler defined
by the following type:

typedef void (*gxUserErrorProcPtr)(gxGraphicsError status,

long reference);

typedef gxUserErrorProcPtr gxUserErrorFunction;

The second parameter is the long reference number. Whenever the application posts an
error, the installed error handling function is called with the error number. The reference
number is passed to the GXSetUserGraphicsError function.

You can install an error handler before calling the GXEnterGraphics function, but you
should call the GXNewGraphicsClient function first. If you don’t,
GXNewGraphicsClient will be called for you.

SPECIAL CONSIDERATIONS

If the error number posted by the application is within the QuickDraw GX range of fatal
errors, execution continues with undefined results. The fatal error range is bounded
by error numbers –27999 and –27951.

If the error number posted by the application is within the QuickDraw GX range
of nonfatal errors, execution continues, but results may be other than that expected. The
nonfatal error range is bounded by error numbers –27950 and –27000.
3-58 Errors, Warnings, and Notices Reference

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” beginning on page 3-40.

The GXGetUserGraphicsError function used to return a pointer to the
application-defined error-handling function is described in the next section.

An alternative method of posting errors is to use the QuickDraw GX error messages.
This topic is discussed in the section “Obtaining Errors, Warnings, and Notices”
beginning on page 3-30.

The GXGetGraphicsError function described on page 3-56 is used to obtain the first
and last QuickDraw GX errors posted.

The application-defined error handler is described on page 3-72.

GXGetUserGraphicsError 3

You can use the GXGetUserGraphicsError function to obtain the currently installed
application-defined error handler.

gxUserErrorFunction GXGetUserGraphicsError(long *reference);

reference A pointer to a long value that gets called each time an error occurs. This
value can be used by the application for any purpose.

function result A pointer to the installed application-defined error handler function.

DESCRIPTION

The GXGetUserGraphicsError function returns a pointer to the function that the
application uses to handle errors. The function returns nil if no application-defined
error handler is provided.

If an error-handling function is installed and the reference parameter is not nil, then
the reference parameter passed to the GXSetUserGraphicsError function is
returned.

SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” beginning on page 3-40.

The GXSetUserGraphicsError function used to install the error handler is described
in the previous section.

An alternative method to the use of an application-defined error handler is the use of the
QuickDraw GX error set.
Errors, Warnings, and Notices Reference 3-59

C H A P T E R 3

Errors, Warnings, and Notices
The GXGetGraphicsError function, described in the section “Obtaining Errors,
Warnings, and Notices” beginning on page 3-30, returns the first and last QuickDraw GX
errors that have been posted.

Warning Posting and Handling 3

This section describes the QuickDraw GX functions you can use to

■ obtain the first and last QuickDraw GX warnings posted

■ replace the current error name with another error name

■ install the application-defined warning handler function

■ obtain the installed application-defined warning handler function

■ add a warning to the ignore warning stack

■ remove the last warning to be added to the warning stack

GXGetGraphicsWarning 3

You can use the GXGetGraphicsWarning function to obtain the first and last warning
posted.

gxGraphicsWarning GXGetGraphicsWarning

(gxGraphicsWarning *stickyWarning);

stickyWarning
On return, a pointer to the first warning posted.

function result The last warning posted.

DESCRIPTION

The GXGetGraphicsWarning function returns the last warning posted, or 0 if none.

The stickyWarning parameter, if not nil, receives the first warning posted since the
last call to the GXGetGraphicsWarning function. QuickDraw GX clears the
stickyWarning parameter at the end of every call to the GXGetGraphicsWarning
function.
3-60 Errors, Warnings, and Notices Reference

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
SEE ALSO

The use of this function is described in the section“Obtaining Errors, Warnings, and
Notices” beginning on page 3-30.

QuickDraw GX non-debugging warnings that may be posted are listed in the
section “Warnings” beginning on page 3-10. Debugging warnings are listed in
the section “Warnings” beginning on page 3-10.

An alternative method of posting warnings is to include an application-defined warning
handler. This topic is described in the section “Changing the Error, Warning, or Notice
Posted” beginning on page 3-35.

The GXSetUserGraphicsWarning function is used to install the warning handler and
is described on page 3-62.

GXPostGraphicsWarning 3

You can use the GXPostGraphicsWarning function to post your own warnings from
your application.

void GXPostGraphicsWarning(gxGraphicsWarning warning);

warning The warning to be posted.

DESCRIPTION

The GXPostGraphicsWarning function replaces the QuickDraw GX warning about to
be posted with a warning message defined by the warning parameter.

You may use the QuickDraw GX warnings or define your own warning number and
warning name. This function stores the warning posted so that subsequent calls to the
GXGetGraphicsWarning function return the warning substituted by this function.

If the warning to be posted is in the ignore warning stack, the warning is not posted and
execution continues.

If an application-defined warning handler is provided, the warning is passed to the
warning handler.

SPECIAL CONSIDERATIONS

The warning number must be within the range defined by QuickDraw GX. This range is
bounded by warning numbers –26999 through –26000 or is in an application range.
Errors, Warnings, and Notices Reference 3-61

C H A P T E R 3

Errors, Warnings, and Notices
SEE ALSO

The use of this function is described in the section “Changing the Error, Warning, or
Notice Posted” beginning on page 3-35.

QuickDraw GX non-debugging warnings that may be replaced are listed in the
section “Warnings” beginning on page 3-10. Debugging warnings are listed in
the section “Warnings” beginning on page 3-10.

Ignoring warnings is discussed in the section “Ignoring Warnings and Notices”
beginning on page 3-37.

GXSetUserGraphicsWarning 3

You can use the GXSetUserGraphicsWarning function to install an
application-defined warning handler.

void GXSetUserGraphicsWarning(gxUserWarningFunction userFunction,

 long reference);

userFunction
The application’s warning function that is to be passed the warning code.

reference A long value that gets called each time a warning occurs. This value can
be used by the application for any purpose.

DESCRIPTION

The GXSetUserGraphicsWarning function installs an application-defined warning
handler. This function installs a function pointer that is called whenever a warning is
posted. Setting the userFunction parameter to nil removes the error function.

The userFunction parameter points to an application-defined warning handler
defined by the following type:

typedef void (*gxUserWarningProcPtr)(gxGraphicsWarning status,

long refcon)

typedef gxUserWarningProcPtr gxUserWarningFunction;

The second parameter is the long reference parameter. Whenever a warning is posted
by the application, the installed warning handler is called with the warning number. The
reference number is passed to the GXSetUserGraphicsError function.

You can install a warning handler before calling the GXEnterGraphics function ,
but you should call the GXNewGraphicsClient function first. If you don’t,
GXNewGraphicsClient will be called for you.
3-62 Errors, Warnings, and Notices Reference

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” beginning on page 3-40.

The GXGetUserGraphicsWarning function described in the next section is used to
return a pointer to the application-defined warning handler.

An alternative method of posting warnings is to use the QuickDraw GX warning
messages. This topic is discussed in the section “Obtaining Errors, Warnings, and
Notices” beginning on page 3-30.

The GXGetGraphicsError function described on page 3-56 is used to obtain the first
and last QuickDraw GX errors posted.

The application-defined warning handler is described on page 3-73.

GXGetUserGraphicsWarning 3

You can use the GXGetUserGraphicsWarning function to obtain the currently
installed application-defined warning handler.

gxUserWarningFunction GXGetUserGraphicsWarning(long *reference);

reference A long value that gets called each time a warning occurs. This value can
be used by your application for any purpose.

function result A pointer to the installed application-defined warning handler.

DESCRIPTION

The GXGetUserGraphicsWarning function returns a pointer to the function that the
application uses to handle warnings. The function returns nil if no application-defined
warning handler is provided.

If a warning handler is installed and the reference parameter is not nil, then the
reference parameter passed to the GXSetUserGraphicsWarning function is
returned.

SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” beginning on page 3-40.

The GXSetUserGraphicsWarning function used to install the warning handler is
described in the previous section.

An alternative method to the use of an application-defined warning handler is the use of
the QuickDraw GX warnings.
Errors, Warnings, and Notices Reference 3-63

C H A P T E R 3

Errors, Warnings, and Notices
The GXGetGraphicsWarning function, described in the section “Obtaining Errors,
Warnings, and Notices” beginning on page 3-30, returns the first and last QuickDraw
GX warnings that have been posted.

GXIgnoreGraphicsWarning 3

You can use the GXIgnoreGraphicsWarning function to ignore warnings.

void GXIgnoreGraphicsWarning(gxGraphicsWarning warning);

warning The warning number or warning name to ignore.

DESCRIPTION

The GXIgnoreGraphicsWarning function adds the warning to be ignored to the
ignore warning stack. The posting of warnings is suppressed for all warnings on
the ignore warning stack. Warnings may be removed from the ignore warnings stack
by the use of the GXPopGraphicsWarning function.

You may use any Quickdraw GX warning numbers and warning names or, if you have
installed an application-defined warning handler, you may use your own warning
numbers and warning names, as long as they use a numbering system different than that
provided by QuickDraw GX.

SPECIAL CONSIDERATIONS

The GXIgnoreGraphicsWarning function saves warning numbers in a warning stack
of limited size, so that a limited number of warnings can be ignored at one time. If the
GXIgnoreGraphicsWarning function has been called too many times with no
matching calls to the GXPopGraphicsWarning function, subsequent calls to the
GXIgnoreGraphicsWarning function do not cause the warning to be ignored and a
warning_stack_overflow warning is posted.

ERRORS, WARNINGS, AND NOTICES

Warnings
warning_stack_overflow
3-64 Errors, Warnings, and Notices Reference

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
SEE ALSO

The use of this function is described in the section “Ignoring Warnings and Notices”
beginning on page 3-37.

QuickDraw GX non-debugging warnings that may be posted are listed in the
section “Warnings” beginning on page 3-10. Debugging warnings are listed in
the section “Warnings” beginning on page 3-10.

The GXPopGraphicsWarning function is described in the next section.

GXPopGraphicsWarning 3

You can use the GXPopGraphicsWarning function to remove ignore warnings from the
ignore warning stack.

void GXPopGraphicsWarning(void);

DESCRIPTION

The GXPopGraphicsWarning function removes the last warning placed on the ignore
warning stack by the GXIgnoreGraphicsWarning function. The
GXPopGraphicsWarning function removes warnings from the stack in the opposite
order that they were added to the stack (last in, first out). Calls to the
GXIgnoreGraphicsWarning and GXPopGraphicsWarning functions can be nested.

SPECIAL CONSIDERATIONS

If no warning is on the warning stack when you call this function, a
warning_stack_underflow warning is posted.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The use of this function is described in the section “Ignoring Warnings and Notices”
beginning on page 3-37.

QuickDraw GX non-debugging warnings that may be added to and removed from the
ignore warning stack are listed in the section “Warnings” beginning on page 3-10.
Debugging warnings are listed in the section “Warnings” beginning on page 3-10.

The GXIgnoreGraphicsWarning function is described in the previous section.

Warnings
warning_stack_underflow
Errors, Warnings, and Notices Reference 3-65

C H A P T E R 3

Errors, Warnings, and Notices
Notice Posting and Handling 3

This section describes the QuickDraw GX functions you can use to

■ obtain the first and last notice posted

■ install the current notice

■ install an application-defined function for posted notices

■ obtain an application-defined notice handler function for posted notices

■ add a notice to the ignore notice stack

■ remove the last notice to be added to the notice stack

GXGetGraphicsNotice 3

You can use the GXGetGraphicsNotice function to obtain the first and last notices
posted.

gxGraphicsNotice GXGetGraphicsNotice

(gxGraphicsNotice *stickyNotice);

stickyNotice
On return, a pointer to the first notice posted.

function result The last notice posted.

DESCRIPTION

The GXGetGraphicsNotice function returns the last notice posted, or 0 if none. The
stickyNotice parameter, if not nil, receives the first notice posted since the last call
to the GXGetGraphicsNotice function.

SPECIAL CONSIDERATIONS

QuickDraw GX clears the stickyNotice argument at the end of every call to the
GXGetGraphicsNotice function. It always returns 0 on non-debugging versions.

SEE ALSO

The use of this function is described in the section“Obtaining Errors, Warnings, and
Notices” beginning on page 3-30.
3-66 Errors, Warnings, and Notices Reference

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
An alternative method of posting notices is to include an application-defined notice
handler. This topic is described in the section “Changing the Error, Warning, or Notice
Posted” beginning on page 3-35.

The GXSetUserGraphicsNotice function that is used to install the notice handler is
described on page 3-68.

GXPostGraphicsNotice 3

You can use the GXPostGraphicsNotice function to post your own notices from
inside your application.

void GXPostGraphicsNotice(gxGraphicsNotice notice);

notice The notice to be posted.

DESCRIPTION

The GXPostGraphicsNotice function replaces the QuickDraw GX notice about to be
posted with a notice message defined by the notice parameter.

You may use the QuickDraw GX notices or define your own notice number and notice
name. This function stores the posted notice so that subsequent calls to the
GXGetGraphicsNotice function return the notice substituted by this function.

If the notice to be posted is in the ignore notice stack, the notice is not posted and
execution continues. Ignoring notices is discussed in the section “Ignoring Warnings and
Notices” beginning on page 3-37.

If an application-defined notice handler is provided, the notice is passed to the handler.

The GXIgnoreGraphicsNotice function has no effect in the non-debugging version.

SPECIAL CONSIDERATIONS

The notice number must be within the range defined by QuickDraw GX. This range is
bounded by notice numbers –25999 through –25500 or is in an application range.

SEE ALSO

The use of this function is described in the section “Changing the Error, Warning, or
Notice Posted” beginning on page 3-35.

Notice handlers are discussed in the section “Installing an Error, Warning, or Notice
Handler” beginning on page 3-40.
Errors, Warnings, and Notices Reference 3-67

C H A P T E R 3

Errors, Warnings, and Notices
GXSetUserGraphicsNotice 3

You can use the GXSetUserGraphicsNotice function to install a notice handler.

void GXSetUserGraphicsNotice(gxUserNoticeFunction userFunction,

long reference);

userFunction
The application function that is to be passed the notice result code.

reference A long value that is called each time a notice occurs. This value can be
used by the application for any purpose.

DESCRIPTION

The GXSetUserGraphicsNotice function installs an application-defined notice-
handling function. This function installs a function pointer that is called whenever a
notice is posted. Setting the userFunction parameter to nil removes the notice
function.

The userFunction parameter points to an application-defined notice handler defined
by the following type:

typedef void (*gxUserNoticeProcPtr)(gxGraphicsNotice status,

long reference)

typedef gxUserNoticeProcPtr gxUserNoticeFunction;

The second parameter is the long reference. Whenever a notice is posted by the
application, the installed notice handler is called with the notice number. The reference
number is passed to the GXSetUserGraphicsNotice function.

You can install a notice handler before calling the GXEnterGraphics function, but you
should call the GXNewGraphicsClient function first. If you don’t, it will be called for
you.

The GXSetUserGraphicsNotice function has no effect in the non-debugging version.

SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” beginning on page 3-40.

The GXGetUserGraphicsNotice function used to return a pointer to the
application-defined notice handler is described in the next section.

The application-defined notice handler is described on page 3-74.
3-68 Errors, Warnings, and Notices Reference

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
GXGetUserGraphicsNotice 3

You can use the GXGetUserGraphicsNotice function to obtain the currently installed
application-defined notice handler.

gxUserNoticeFunction GXGetUserGraphicsNotice(long *reference);

reference A long value that is called each time a notice occurs. This value can be
used by the application for any purpose.

function result A pointer to the installed application-defined notice handler.

DESCRIPTION

The GXGetUserGraphicsNotice function returns a pointer to the function that the
application uses to handle notices. The function returns nil if no application-defined
notice handler is installed.

If a notice handler function is installed and the reference parameter is not nil, then
the reference parameter passed to the GXSetUserGraphicsNotice function is
returned.

The GXGetUserGraphicsNotice function has no effect in the non-debugging version.

SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” beginning on page 3-40.

The GXSetUserGraphicsNotice function used to install the notice handler is
described in the previous section.

An alternative method to the use of an application-defined notice handler is the use of
QuickDraw GX notices. The GXGetGraphicsNotice function, described in the section
“Obtaining Errors, Warnings, and Notices” beginning on page 3-30, returns the first and
last QuickDraw GX notices that have been posted.
Errors, Warnings, and Notices Reference 3-69

C H A P T E R 3

Errors, Warnings, and Notices
GXIgnoreGraphicsNotice 3

You can use the GXIgnoreGraphicsNotice function to ignore QuickDraw GX notices
that may occur when specific parts of your application execute.

void GXIgnoreGraphicsNotice(gxGraphicsNotice notice);

notice The graphics notice number or name to ignore.

DESCRIPTION

The GXIgnoreGraphicsNotice function adds the notice to be ignored to the ignore
notice stack. The posting of notices is suppressed for all notices on the ignore notice
stack. Notices may be removed from the ignore notice stack by the use of the
GXPopGraphicsNotice function.

You may use any QuickDraw GX notice numbers and notice names or, if you have
installed an application-defined notice handler, you may use your own notice numbers
and notice names, as long as they use a numbering system different than that provided
by QuickDraw GX.

This function has no effect in non-debugging versions

SPECIAL CONSIDERATIONS

The GXIgnoreGraphicsNotice function saves notice numbers in a warning stack of
limited size. If the GXIgnoreGraphicsNotice function has been called too many
times with no matching calls to the GXPopGraphicsNotice function, subsequent calls
to the GXIgnoreGraphicsNotice function do not cause the notice to be ignored and a
notice_stack_overflow warning is be posted.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The use of this function is described in the section “Ignoring Warnings and Notices”
beginning on page 3-37.

QuickDraw GX notices that may be posted are listed in the section “Notices” beginning
on page 3-27.

The GXPopGraphicsNotice function is described in the next section.

Warnings
notice_stack_overflow
3-70 Errors, Warnings, and Notices Reference

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
GXPopGraphicsNotice 3

You can use the GXPopGraphicsNotice function to remove notices from the ignore
notice stack.

void GXPopGraphicsNotice(void);

DESCRIPTION

The GXPopGraphicsNotice function removes the last notice added to the ignore
notice stack by the GXIgnoreGraphicsNotice function. The
GXPopGraphicsNotice function removes notices from the stack in the opposite order
that they were added to the stack (last in, first out). Calls to the
GXIgnoreGraphicsNotice function and the GXPopGraphicsNotice function can
be nested.

The GXPopGraphicsNotice function has no effect in the non-debugging version.

SPECIAL CONSIDERATIONS

If no notice is on the ignore notice stack when you call this function, a
notice_stack_underflow warning is posted.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The use of this function is described in the section “Ignoring Warnings and Notices”
beginning on page 3-37.

QuickDraw GX notices that may be added and removed from the ignore notice stack are
listed in the section “Notices” beginning on page 3-27.

The GXIgnoreGraphicsNotice function is described in the previous section.

Warnings
notice_stack_underflow
Errors, Warnings, and Notices Reference 3-71

C H A P T E R 3

Errors, Warnings, and Notices
Application-Defined Functions 3
QuickDraw GX supports application-defined error, warning, and notice handlers. These
handlers are installed by the use of the GXSetUserGraphicsError,
GXSetUserGraphicsWarning, and GXSetUserGraphicsNotice functions.

MyUserGraphicsError 3

You can use the MyUserGraphicsError function to provide an application-defined
error handler for your application.

void MyUserGraphicsError(gxGraphicsError error, long reference);

error The QuickDraw GX error being passed to the handler.

reference A long value passed each time that an error occurs. This value can be
used by the error handler for any purpose.

DESCRIPTION

The MyUserGraphicsError function is called with the error number posted by the
failed function. The MyUserGraphicsError function can evaluate the error and
respond in any appropriate manner.

The error handler is enabled and disabled by the use of the
GXSetUserGraphicsError function. If its parameter is set to nil, the error handler is
disabled. If its parameter is not nil, the error handler is enabled and all errors detected
by QuickDraw GX are passed to the error handler for processing and possible response.

The GXGetUserGraphicsError function returns the currently installed
application-defined error handler.

SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” on page 3-40.

QuickDraw GX non-debugging errors that may be sent to the error handler are listed in
section “Errors” beginning on page 3-6. Debugging errors are listed in the section
“Errors” beginning on page 3-6.

The GXSetUserGraphicsError function is described on page 3-58.

The GXGetUserGraphicsError function is described on page 3-59.
3-72 Errors, Warnings, and Notices Reference

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
MyUserGraphicsWarning 3

You can use the MyUserGraphicsWarning function to provide an application-defined
warning handler for your application.

void MyUserGraphicsWarning(gxGraphicsWarning warning,

long reference);

warning The QuickDraw GX warning being passed to the handler.

reference A long value passed each time that a warning occurs. This value can be
used by the warning handler for any purpose.

DESCRIPTION

The MyUserGraphicsWarning function is called with the warning number posted by
the defective function. The MyUserGraphicsWarning function can evaluate the
warning and respond in any appropriate manner.

The warning handler is enabled and disabled by the use of the
GXSetUserGraphicsWarning function. If its parameter is set to nil, the warning
handler is disabled. If its parameter is not nil, the warning handler is enabled and all
warnings detected by QuickDraw GX are passed to the warning handler for processing
and possible response.

The GXGetUserGraphicsWarning function returns the currently installed
application-defined warning handler.

SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” on page 3-40.

Warnings that may be sent to the warning handler are listed in the section “Warnings”
beginning on page 3-10.

The GXSetUserGraphicsWarning function is described on page 3-62.

The GXGetUserGraphicsWarning function is described on page 3-63.
Errors, Warnings, and Notices Reference 3-73

C H A P T E R 3

Errors, Warnings, and Notices
MyUserGraphicsNotice 3

You can use the MyUserGraphicsNotice function to provide an application-defined
notice handler for your application.

void MyUserGraphicsNotice(gxGraphicsNotice notice,

long reference);

notice The QuickDraw GX notice being passed to the handler.

reference A long value passed each time that a notice occurs. This value can be
used by the notice handler for any purpose.

DESCRIPTION

The MyUserGraphicsNotice function is called with the notice number posted by the
defective function. The MyUserGraphicsNotice function can evaluate the notice and
respond in any appropriate manner.

The notice handler is enabled and disabled by the use of the
GXSetUserGraphicsNotice function. If its parameter is set to nil, the notice handler
is disabled. If its parameter is not nil, the notice handler is enabled and all notices
detected by QuickDraw GX are passed to the notice handler for processing and possible
response.

The GXGetUserGraphicsNotice function returns the currently installed
application-defined notice handler. This function will never be called in the
non-debugging version of QuickDraw GX.

SEE ALSO

The use of this function is described in the section “Installing an Error, Warning, or
Notice Handler” on page 3-40.

Notices that may be sent to the notice handler are listed in the section “Notices”
beginning on page 3-27.

The GXSetUserGraphicsNotice function is described on page 3-68.

The GXGetUserGraphicsNotice function is described on page 3-69.
3-74 Errors, Warnings, and Notices Reference

C H A P T E R 3

Errors, Warnings, and Notices

3
E

rrors, W
arnings, and N

otices
Summary of Errors, Warnings, and Notices 3

Constants and Data Types 3

QuickDraw GX Errors

typedef long gxGraphicsError

QuickDraw GX Warnings

typedef long gxGraphicsWarning

QuickDraw GX Notices

typedef long gxGraphicsNotice

Application-Defined Handlers

typedef void (*gxUserErrorProcPtr)(gxGraphicsError status,
long refcon)

typedef gxUserErrorProcPtr gxUserErrorFunction;

typedef void (*gxUserWarningProcPtr)(gxGraphicsWarning
status,long refcon)

typedef gxUserWarningProcPtr gxUserWarningFunction;

typedef void (*gxUserNoticeProcPtr)(gxGraphicsNotice status,
long refcon)

typedef gxUserNoticeProcPtr gxUserNoticeFunction;

Functions 3

Error Posting and Handling

gxGraphicsError GXGetGraphicsError
(gxGraphicsError *stickyError);

void GXPostGraphicsError (gxGraphicsError error);

void GXSetUserGraphicsError (gxUserErrorFunction userFunction,
long reference);

gxUserErrorFunction GXGetUserGraphicsError
(long *reference);
Summary of Errors, Warnings, and Notices 3-75

C H A P T E R 3

Errors, Warnings, and Notices
Warning Posting and Handling

gxGraphicsWarning GXGetGraphicsWarning
(gxGraphicsWarning *stickyWarning);

void GXPostGraphicsWarning (gxGraphicsWarning warning);

void GXSetUserGraphicsWarning
(gxUserWarningFunction userFunction,
long reference);

gxUserWarningFunction GXGetUserGraphicsWarning
(long *reference);

void GXIgnoreGraphicsWarning
(gxGraphicsWarning warning);

void GXPopGraphicsWarning (void);

Notice Posting and Handling

gxGraphicsNotice GXGetGraphicsNotice
(gxGraphicsNotice *stickyNotice);

void GXPostGraphicsNotice (gxGraphicsNotice notice);

void GXSetUserGraphicsNotice
(gxUserNoticeFunction userFunction,
long reference);

gxUserNoticeFunction GXGetUserGraphicsNotice
(long *reference);

void GXIgnoreGraphicsNotice
(gxGraphicsNotice notice);

void GXPopGraphicsNotice (void);

Application-Defined Functions 3

void MyUserGraphicsError (gxGraphicsError error, long reference);

void MyUserGraphicsWarning (gxGraphicsWarning warning, long reference);

void MyUserGraphicsNotice (gxGraphicsNotice notice, long reference);
3-76 Summary of Errors, Warnings, and Notices

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 QuickDraw GX and the Macintosh Environment TOC
	 QuickDraw GX and the Macintosh
	 QuickDraw GX Memory Management TOC
	 QuickDraw GX Memory Management
	 Errors, Warnings, and NoticesTOC
	Errors, Warnings, and Notices
	About QuickDraw GX Errors, Warnings, and Notices
	Non-Debugging Version
	Errors
	Warnings

	Debugging Version
	Errors
	Warnings
	Notices

	Using Errors, Warnings, and Notices
	Obtaining Errors, Warnings, and Notices
	Changing the Error, Warning, or Notice Posted
	Ignoring Warnings and Notices
	Installing an Error, Warning, or Notice Handler

	Errors, Warnings, and Notices Reference
	Constants and Data Types
	Errors
	Warnings
	Notices
	Error, Warning, and Notice Number Ranges

	Functions
	Error Posting and Handling
	Warning Posting and Handling
	Notice Posting and Handling

	Application-Defined Functions

	Summary of Errors, Warnings, and Notices
	Constants and Data Types
	Functions
	Application-Defined Functions

	 QuickDraw GX Debugging TOC
	 QuickDraw GX Debugging
	 Collection Manager TOC
	 Collection Manager
	 Message Manager TOC
	 Message Manager
	 QuickDraw GX Stream Format TOC
	 QuickDraw GX Stream Format
	 QuickDraw GX Mathematics TOC
	 QuickDraw GX Mathematics
	 Glossary
	 Index
	 Colophon

