

C H A P T E R 4

4

Q
uickD

raw
 G

X
 D

ebugging

QuickDraw GX Debugging 4

This chapter describes the QuickDraw GX application debugging environment and the
functions and utilities that you can use to debug your application. Read this chapter if
you are developing a QuickDraw GX application and want to use these features.

Before reading this chapter, you should be familiar with the debugging and
non-debugging versions of QuickDraw GX described in the chapter “Errors, Warnings,
and Notices” in this book. You should also read the chapter “Introduction to QuickDraw
GX” in Inside Macintosh: QuickDraw GX Objects.

For more information on debugging printing applications, see Inside Macintosh:
QuickDraw GX Printing and Inside Macintosh: QuickDraw GX Printing Extensions and
Drivers.

This chapter introduces the QuickDraw GX debugging environment. It then describes
how to use this environment during application development to

■ analyze drawing problems

■ validate public and internal function parameters for all allocated objects

■ validate public and internal function parameters for specific objects

■ distinguish between application and QuickDraw GX bugs

■ detect corrupted objects

■ install a debugging function

■ use the GraphicsBug utility

This chapter also contains reference information for all data types and functions
associated with QuickDraw GX debugging.

About QuickDraw GX Debugging 4

QuickDraw GX provides both a debugging environment and a non-debugging
environment. The non-debugging environment is present whenever you install the
non-debugging version of QuickDraw GX. You install the non-debugging version after
completely debugging your application. Users of your application will use the
non-debugging version of QuickDraw GX.

You can develop applications that use QuickDraw GX graphics and typography
functions using the QuickDraw GX debugging environment. The debugging
environment consists of

■ the QuickDraw GX debugging version

■ QuickDraw GX errors, warnings, and notices

■ application-defined error, warning, and notice handlers

■ a QuickDraw GX drawing error function

■ QuickDraw GX validation functions

■ the QuickDraw GX GraphicsBug utility
About QuickDraw GX Debugging 4-3

C H A P T E R 4

QuickDraw GX Debugging

Figure 4-1 shows the QuickDraw GX application development environment.

Figure 4-1 The QuickDraw GX debugging environment

As a direct result of the extensive error, warning, and notice checking the debugging
environment performs, the debugging version of QuickDraw GX is significantly slower
than that of the non-debugging environment. Invoking additional optional error
checking using the validation functions further affects performance.

QuickDraw GX

errors, warnings,

and notices

Application–defined

error,

warning, and

notice

handlers

QuickDraw GX

drawing error

function

QuickDraw GX

validation

functions

QuickDraw GX

GraphicsBug

utility

QuickDraw GX debugging version

QuickDraw GX

application
4-4 About QuickDraw GX Debugging

C H A P T E R 4

QuickDraw GX Debugging

4

Q
uickD

raw
 G

X
 D

ebugging

Debugging Version of QuickDraw GX 4
You should use the debugging version of QuickDraw GX when you are writing and
debugging applications. This version provides an extensive set of errors, warnings, and
notices to help you understand the problems you may encounter during the execution of
your application. In addition, this version provides special functions that allow you to
manage errors, warnings, and notices and to provide public and private error validation.

The debugging version runs slower than the non-debugging version. The reasons for this
are that the debugging version:

■ performs additional error checking

■ posts additional errors, warnings, and notices

■ does not provide speed optimization, such as in-line functions

■ generates MacsBug messages

■ provides additional debugging functions, such as validation

To determine if the debugging or non-debugging version of QuickDraw GX is installed,
see the chapter “QuickDraw GX and the Macintosh Environment.”

QuickDraw GX Errors, Warnings, and Notices 4
QuickDraw GX posts errors, warnings, and notices whenever an execution problem
occurs while an application is running. You can obtain errors, warnings, and notices by
polling or by the use of application-defined error, warning, and notice handlers.

The debugging and non-debugging versions of QuickDraw GX and the errors, warnings,
and notices that may be posted from each version are described in the chapter “Errors,
Warnings, and Notices.”

Application-Defined Error, Warning, and Notice Handlers 4
You can use error, warning, and notice handlers to manage problems that occur when
your application is running. When QuickDraw GX detects an error, warning, or notice it
will call your handler. Your function can then respond accordingly. You can also use
error and warning handlers with the non-debugging version of QuickDraw GX to
provide part of your user interface.

Application-defined error, warning, and notice handlers are described in the section
“Installing an Error, Warning, or Notice Handler” beginning on page 3-40.
About QuickDraw GX Debugging 4-5

C H A P T E R 4

QuickDraw GX Debugging

The Drawing Error Function 4
The debugging version of QuickDraw GX provides a drawing error function that you
can use if you have run your application and get an unexpected result. This function
reparses the entire QuickDraw GX operation, analyzes your application’s draw
procedure, and posts a single error that will assist you in determining what went wrong
with your application. The drawing error function is described in the section “Analyzing
Drawing Problems” beginning on page 4-8.

Validation Functions 4
The debugging version of QuickDraw GX provides validation for applications using
graphics and typographic functions, but does not provide validation for QuickDraw GX
printing functions.

The validation functions check function parameters of allocated objects to see if they are
valid. If QuickDraw GX finds one or more parameters of a function to be invalid, it posts
a validation error. All of the validation errors that may be posted are listed in the chapter
“Errors, Warnings, and Notices.”

There are two modes of validation that control when validation occurs:

■ public validation

■ internal validation

Public validation occurs whenever the public validation flag is set and your application
uses a public function. A public function is any function that you use in your application.
This is the mode of validation developers use most.

Internal validation occurs whenever the internal validation flag is set and your
application uses a public function and whenever QuickDraw GX uses one of its internal
(private) functions. Application developers do not usually use internal validation.
Internal validation performs checking on functions that you have no control over. As a
result, you will rarely need to perform this type of validation. However, QuickDraw GX
provides internal validation to allow you to distinguish between bugs that appear in
public functions and bugs that are present in the QuickDraw GX internal functions, as
discussed in the section “Distinguishing Between Application Bugs and QuickDraw GX
Bugs” beginning on page 4-22.

There are three levels of validation that control what is checked during validation:

■ type validation

■ structure validation

■ all object validation

The validation these three levels provide is cumulative and progressively more complex.
For example, all object validation includes type validation and structure validation.
4-6 About QuickDraw GX Debugging

C H A P T E R 4

QuickDraw GX Debugging

4

Q
uickD

raw
 G

X
 D

ebugging

In addition to these three levels, there are separate object validation functions.

Type validation confirms the validity of references to object types. For example, when
you call the GXDrawShape function, type validation confirms that a shape type is passed.

Structure validation confirms the validity of references to object types and the properties
of the function, and also checks internal caches. For example, when you call the
GXDrawShape function, structure validation confirms not only that the function passes a
shape, but also confirms the validity of the properties specified in the shape’s style, ink,
and transform objects.

All object validation confirms the validity of references to a specific object type, the
validity of the properties of all objects, and all internal caches.

Specific object validation functions are used to confirm that all references to a specific
object type are valid, that the properties of all objects are valid, and that all internal
caches built for the specific object type are valid. Specific object validation functions are
provided for shapes, styles, inks, transforms, color sets, color profiles, tags, view devices,
view ports, view groups, and graphics clients.

It is important to note that not all parameters of all functions are checked by validation.
Validation does not check scalars and structures, such as bitmaps and dash records.

For example, the second parameter of the GXSetShapePen function is the pen size. If
you pass a negative value to the second parameter, QuickDraw GX will not post a
validation error. Fortunately, QuickDraw GX often provides an overlap in its debugging
capabilities, and in this case, the GXSetShapePen function would post an error
indicating that the size is invalid.

Validation does check

■ objects that are indicated by pointer values, such as shapes

■ objects that are indicated by references, such as view devices

Note
You should not make an application dependent on whether an object is
referred to by pointer or reference. This is subject to change in future
versions of QuickDraw GX. ◆

You can enable validation selectively over the selected problem area of code. Rather than
turning validation on at the beginning of your application, you may find it is more
useful to concentrate on an area where a problem is suspected and to turn validation on
and off selectively in that area or selectively use the specific object validation functions.

MacsBug and GraphicsBug 4
Both the debugging and non-debugging versions of QuickDraw GX support MacsBug
and GraphicsBug. MacsBug is Apple Computer, Inc.’s, assembly-language debugger
that was developed for Macintosh programmers. MacsBug is not very useful for
debugging QuickDraw GX applications because GX data structures are private. For
additional information about MacsBug, see MacsBug Reference and Debugging Guide.
About QuickDraw GX Debugging 4-7

C H A P T E R 4

QuickDraw GX Debugging

GraphicsBug is Apple Computer Inc.’s symbolic debugger for QuickDraw GX
applications. This utility assists in finding bugs by allowing you to display and check
QuickDraw GX objects. GraphicsBug is modeled after MacsBug. In fact, many of the
commands are similar.

The use of GraphicsBug to analyze a QuickDraw GX graphics client heap is described in
the section “Debugging With GraphicsBug” beginning on page 4-23.

Using QuickDraw GX Debugging 4

You can use the QuickDraw GX debugging environment to help you debug your
application. This section shows how you can

■ determine why a shape didn’t draw

■ validate using public, internal, or object modes of validation

■ validate types, structures, and all objects

■ validate memory

■ distinguish between QuickDraw GX bugs and application bugs

■ validate public objects

■ analyze the QuickDraw GX graphics heap with the GraphicsBug utility

Analyzing Drawing Problems 4
If you have run your application and a shape didn’t draw as you anticipated, you can
use the GXGetShapeDrawError function to have QuickDraw GX analyze why the
shape didn’t draw correctly. This function checks the content of a shape and all of the
objects referenced by the shape for a condition that explains why the shape has no
visible effect when drawn. As a result, GXGetShapeDrawError returns a single
drawing error from the gxDrawErrors enumeration that may describe why the shape
failed to draw correctly. The gxDrawErrors enumeration is listed in the section
“Drawing Errors” beginning on page 4-29. The GXGetShapeDrawError function is
described on page 4-33.These errors should not be confused with gxGraphicsErrors.

If the drawing was completed successfully, QuickDraw GX posts the NoDrawError
drawing error. If you don’t see the drawing, remember that it may have been drawn to a
different view device or may have just redrawn over the previous shape that was drawn.
The posting of a NoDrawError drawing error does not mean that the shape drawn is
the one you expected or the correct shape. It just means that QuickDraw GX detected no
drawing problems during the processing of the shape drawn.
4-8 Using QuickDraw GX Debugging

C H A P T E R 4

QuickDraw GX Debugging

4

Q
uickD

raw
 G

X
 D

ebugging

The drawing error QuickDraw GX posts is selected from a special subset of the
QuickDraw GX error codes. This set of drawing error codes is structured with respect to
the stage in the drawing process sequence that the drawing failed. The earliest stage of
failure will be described in the posted drawing error. The single error code posted
attempts to indicate the reason that you do not see the drawing that you anticipated.

Drawing errors are grouped into categories that correspond to the approximate sequence
of QuickDraw GX processing, as shown in Table 4-1.

The processing sequence is also the sequence of drawing errors posted. QuickDraw GX
posts the first drawing error that is detected. It does not post subsequent drawing errors
until the error posted earlier in the process sequence is corrected. For example, if an
application attempts to draw a defective shape with a defective view port, QuickDraw
GX posts a single shape type drawing error and does not post a view port drawing error.
This is because QuickDraw GX analyzes the integrity of the shape earlier in the drawing
process. It analyzes the integrity of the view port toward the end of the process. Once
you correct the defective shape, QuickDraw GX can detect the defective view port in
subsequent analysis with the GXGetShapeDrawError function.

Table 4-1 QuickDraw GX drawing process sequence

Drawing process
sequence Object processed

1 Shape type

2 Style

3 Ink

4 Transform

5 View port

6 View device
Using QuickDraw GX Debugging 4-9

C H A P T E R 4

QuickDraw GX Debugging

Table 4-2 shows the GXGetShapeDrawError function shape type drawing errors that
QuickDraw GX may post.

Table 4-2 Shape type drawing errors

Error Description

shape_emptyType An empty type doesn’t have an area to draw.

shape_inverse_fullType An inverse full type doesn’t have an area to draw.

rectangle_zero_width The rectangle doesn’t have an area to draw.

rectangle_zero_height The rectangle doesn’t have an area to draw.

polygon_empty There is no contour to draw.

path_empty There is no contour to draw.

bitmap_zero_width The bitmap doesn’t have an area to draw.

bitmap_zero_height The bitmap doesn’t have an area to draw.

text_empty There is no character to draw.

glyph_empty There is no glyph to draw.

layout_empty There is no layout to draw.

picture_empty There is no shape in the picture.

shape_no_fill The shape fill is set to gxNoFill, which will not
draw.

shape_no_enclosed_area There is no enclosed area to draw.

shape_no_enclosed_pixels There is an enclosed area, but it is so small that it
does not cross any pixel centers.

shape_very_small There is a shape to draw, but it is extremely small
(on the order of the size of a pixel).

shape_very_large Part of the shape may be drawn outside the
bounds of the coordinate system (±32,768).

shape_contours_cancel The shapes contours overlap and cancel each
other out.
4-10 Using QuickDraw GX Debugging

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
Table 4-3 shows the GXGetShapeDrawError function style drawing errors.

Table 4-3 Style drawing errors

Error Description

pen_too_small The pen width is so small that it doesn’t enclose
any pixels and therefore doesn’t draw.

text_size_too_small The text size is so small that it doesn’t enclose
any pixels and therefore doesn’t draw.

dash_empty The dash shape was specified as an empty type
shape.

start_cap_empty The start cap shape was specified as an empty
type shape.

pattern_empty The pattern shape was specified as an empty
type shape.

textFace_Empty Each layer of the text face has a shape fill equal
to gxNoFill.

shape_primitive_empty The original shape enclosed an area. There is no
stylized shape to draw. An example is a pattern
shape that contains overlapping patterns that
cancel.

shape_primitive_very_small There is a shape to draw, but it is extremely
small (on the order of the size of a pixel). An
example is a scaled transform that shrinks the
shape.
Using QuickDraw GX Debugging 4-11

C H A P T E R 4

QuickDraw GX Debugging
Table 4-4 shows the GXGetShapeDrawError function ink drawing errors.

Table 4-4 Ink drawing errors

Error Description

transfer_equals_noMode The transfer mode gxNoMode suppresses
drawing.

transfer_matrix_ignores_source The transfer mode’s mapping scales all
values greater than 1 or less than 0 and
the overComponent flag is not set.

transfer_matrix_ignores_device The transfer mode’s mapping scales all
values greater than 1 or less than 0 and
the overComponent flag is not set.

transfer_source_reject The color is not within the source
minimum and the source maximum.

transfer_mode_ineffective The transfer mode has no effect on the
device. An example is a blend with an
operand of 0.

colorSet_no_entries There are no colors in the color set so
there is nothing to draw.

bitmap_colorSet_one_entry The bitmap drew, but it is probably not
the desired result, since all colors map to
the one color of the entry. An example is
when the colors are off the end of the
color set.
4-12 Using QuickDraw GX Debugging

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
Table 4-5 shows the GXGetShapeDrawError function transform drawing errors.

Table 4-5 Transform drawing errors

Error Description

transform_scale_too_small The transform has reduced the shape to
less than 1/72 inch. You may see a few
pixels drawn, depending on the
resolution of your view port.

transform_map_too_large
transform_move_too_large
transform_scale_too_large
transform_rotate_too_large
transform_perspective_too_large
transform_skew_too_large

The transform has moved all or part of
the shape outside the bounds of the
coordinate system (±32,768). This may
be the result of a move, scale, rotate,
perspective, or skew transformation.

transform_clip_no_intersection The clip shape does not intersect any
view port.

transform_clip_empty The transform clip is an empty type
shape.

transform_no_viewPorts The number of entries in the view port
list is zero.
Using QuickDraw GX Debugging 4-13

C H A P T E R 4

QuickDraw GX Debugging
Table 4-6 shows the GXGetShapeDrawError function view port drawing errors.

Table 4-6 View port drawing errors

Error Description

viewPort_disposed The view port that was to be drawn to has
already been disposed of. There is no
view port to draw to.

viewPort_clip_empty The view port clip is an empty type shape.

viewPort_clip_no_intersection The view port clip does not intersect the
view device.

viewPort_scale_too_small The map to global space has been
completed. The object is less than 1/72
inch. You may see a few pixels drawn,
depending on the resolution of your view
port.

viewPort_map_too_large
viewPort_move_too_large
viewPort_scale_too_large
viewPort_rotate_too_large
viewPort_perspective_too_large
viewPort_skew_too_large,

The view port mapping has moved all or
part of the shape outside the bounds of
the coordinate system (±32,768). This may
be the result of a move, scale, rotate,
perspective, or skew transformation.

viewPort_viewGroup_offscreen The shape is drawn to an off-screen view
device. This may be normal. This error is
returned to alert you in the event that the
drawing result was unexpected.
4-14 Using QuickDraw GX Debugging

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
Table 4-7 shows the GXGetShapeDrawError function view device drawing errors.

Using Validation Functions 4
QuickDraw GX provides validation functions that check the function parameters of all
allocated objects. You can validate the public functions that you use in your application
or choose to validate the internal QuickDraw GX functions.

Type validation is the simplest level of validation. QuickDraw GX provides successively
more complicated levels of validation when you also check structures and internal
caches. The various validation modes and validation levels are described in the section
“Validation Functions” beginning on page 4-6.

Controlling Validation 4

You can use the GXSetValidation function to control the validation of public and
private functions used by your application. You control validation by using the
GXSetValidation function to set validation level flags for the gxValidationLevel
parameter.

void GXSetValidation(gxValidationLevel, level);

You set one flag from the modes in Table 4-8, one flag from the options in Table 4-9, and
one or more flags from Table 4-10. The validation modes and levels are defined in the
gxValidationLevel enumeration that appears in the section “Drawing Errors”
beginning on page 4-29. The GXSetValidation function is described on page 4-34

Once you set the gxValidationLevel parameter, you can use the GXGetValidation
function to return the current gxValidationLevel parameter.

Table 4-7 View device drawing errors

Error Description

viewDevice_clip_no_intersection The view device clip does not intersect
the bounds described by the view
device bitmap shape.

viewDevice_scale_too_small The mapping to global space has been
completed. The object is less than 1/72
inch. You may see a few pixels drawn,
depending on the resolution of your
draw view port.

viewDevice_map_too_large
viewDevice_move_too_large
viewDevice_scale_too_large
viewDevice_rotate_too_large
viewDevice_perspective_too_large
viewDevice_skew_too_large

The view port mapping has moved the
shape outside the bounds of the
coordinate system (±32,768). This may
be the result of a move, scale, rotate,
perspective, or skew transformation.
Using QuickDraw GX Debugging 4-15

C H A P T E R 4

QuickDraw GX Debugging
The three validation mode options are validation off, public validation, and internal
validation. You may choose only one of these validation options. Table 4-8 summarizes
the public and internal validation mode options.

The validation mode flags allow you to selectively turn validation options on and off.
You should experience reduction in performance only when validation is on. In the
non-debugging version, validation is not operational. However, it is best just to turn
validation off by setting the parameter of the GXSetValidation function to
gxNoValidation.

If you activate either public validation or internal validation mode, then you must also
specify either type validation, structure validation, or all object validation. You may
choose only one option. Table 4-9 summarizes the type, structure, and object validation
level options.

Table 4-8 Validation modes

Constant Value Explanation

gxNoValidation 0x00 Turns off QuickDraw GX validation.

gxPublicValidation 0x01 Performs validation whenever your
application uses a public function.

gxInternalValidation 0x02 Performs validation whenever your
application uses a public function or an
internal function.

Table 4-9 Validation levels

Constant Value Explanation

gxTypeValidation 0x00 Validates object types of function
parameters.

gxStructureValidation 0x10 Validates object structures, caches and
function parameters.

gxAllObjectValidation 0x20 Validates object types, structures, and all
internal caches built for all objects.
4-16 Using QuickDraw GX Debugging

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
Type Validation 4

You can select the gxTypeValidation level to check the type passed to all objects. The
type validation errors are listed in the section “Debugging Version” in the chapter
“Errors, Warnings, and Notices.”

The simplest and most commonly used gxValidationLevel parameter value
combination is of the gxPublicValidation and gxTypeValidation options:

GXSetValidation(gxPublicValidation | gxTypeValidation);

This combination of options causes QuickDraw GX to verify that the objects used by all
public functions your application calls are the correct type. For example, if you call the
GXDrawShape function and pass it a style, the GXSetValidation function posts a
shape_wrong_type error.

If you want to check the type of all objects that your application passes to both public
and internal functions, you can use the gxInternalValidation option plus the
gxTypeValidation option for the gxValidationLevel parameter:

GXSetValidation(gxInternalValidation | gxTypeValidation);

This is useful only for detecting GX internal errors.

Structure Validation 4

You can set the gxStructureValidation validation parameter to check the type and
structure for all objects. The structure validation errors are listed in the section
“Debugging Version” in the chapter “Errors, Warnings, and Notices.”

If you want to check the type of all objects and structure your application passes to
public functions, you can use the gxPublicValidation and
gxStructureValidation options for the gxValidationLevel parameter:

GXSetValidation(gxPublicValidation | gxStructureValidation);

If you want to check the type of all objects and the structure your application passes to
public and internal functions, you can use the gxInternalValidation and
gxStructureValidation options for the gxValidationLevel parameter:

GXSetValidation(gxInternalValidation | gxStructureValidation);

This is useful only for detecting internal GX errors.
Using QuickDraw GX Debugging 4-17

C H A P T E R 4

QuickDraw GX Debugging
The gxStructureValidation option might generate validation errors that are not
part of the public interface. For example, these options may post a
shape_cache_wrong_type error. This suggests only that the application erroneously
changed the internal information that identifies a specific shape cache or an internal GX
error occured. The correct shape and the correct value for a shape cache are private. The
bad_private_flags error means that the application corrupted the flags internal to
some structure. This is a private structure and QuickDraw GX provides no additional
information for these posted errors. However it is useful for a developer to report the
circumstances that produced these errors so that Apple Computer, Inc. can investigate
them.

All Object Validation 4

You can use the gxAllObjectValidation validation level to check the type, structure,
and internal caches built for all objects. In addition, it checks objects written to disk and
the file structure itself to see if they are corrupt. The all object validation errors are listed
in the section “Debugging Version” in the chapter “Errors, Warnings, and Notices.”

If an application has an error that randomly writes to some portion of memory, the error
can corrupt one object as easily as another. As a result, it is necessary to check all objects
to detect this type of error. If a random write occurs in a free memory block or the value
is already in the shape type, QuickDraw GX doesn’t detect it. Again, this validation
allows the developer to discriminate between QuickDraw GX and application problems.

If you want to check the type of all objects, the structure, and the internal caches for all
objects each time public functions are called by your application, you can use the
gxPublicValidation and gxAllObjectValidation options for the
gxValidationLevel parameter:

GXSetValidation(gxPublicValidation | gxAllObjectValidation);

As an alternative to using the gxAllObjectValidation options for the
gxValidationLevel parameter of the GXSetValidation function, you can use the
GXValidateAll function, described in the section “Validating Objects” beginning on
page 4-20. The GXValidateAll function is described on page 4-43.

Memory Validation 4

Once you pick a validation mode and a validation level, you can then also choose to
include or not include memory validation options. Memory validation does not post
validation errors. If QuickDraw GX detects a memory validation problem, it drops you
into Macsbug or the debugging utility that is installed on your system.
4-18 Using QuickDraw GX Debugging

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
Table 4-10 summarizes the memory validation options, all of which are associated with
QuickDraw GX private data structures.

Table 4-10 Memory validation options

Constant Value Explanation

gxNoMemoryManagerValidation 0x0000 Turns off memory validation.

gxApBlockValidation 0x0100 Enables additional error checking
on application blocks passed as
parameters to internal memory
routines.

gxFontBlockValidation 0x0200 Enables additional error checking
on system blocks, often font
caches, passed as parameters to
internal memory routines.

gxApHeapValidation 0x0400 Checks all objects in a heap for
validity each time an internal
memory routine is called.

gxFontHeapValidation 0x0800 Checks all font objects in a heap
for validity each time an internal
memory routine is called.

gxCheckApHeapValidation 0x1000 When used with
gxInternalValidation, checks
the application heap on every
internal function call.

When used with
gxPublicValidation, checks
the application heap on every
public function call.

gxCheckFontHeapValidation 0x2000 When used with
gxInternalValidation, checks
the font heap on every internal
function call.

When used with
gxPublicValidation, checks
the font heap on every public
function call.
Using QuickDraw GX Debugging 4-19

C H A P T E R 4

QuickDraw GX Debugging
If you want to check the type of all objects that your application passes to public
functions and also check the application heap on every public call, you can use the
gxPublicValidation option plus the gxTypeValidation option plus the
gxCheckApHeapValidation option for the gxValidationLevel parameter:

GXSetValidation(gxPublicValidation | gxTypeValidation |

 gxCheckApHeapValidation);

▲ W A R N I N G

If the gxApHeapValidation or gxFontHeapValidation flag is
enabled and the platform that it is running on locates the graphics
memory below the bottom 14 megabytes of memory, then the addresses
on the stack and master pointers that refer to QuickDraw GX objects will
be scrambled. This is a method of finding internal errors that may lead
to unexpected erroneous behavior. For example, if the application has a
path type shape and one long parameter of the path data happens to
exactly equal the address of a graphics object, then QuickDraw GX
might scramble the one long of path data and the path may draw one
point off of the screen. This is expected behavior. These functions can
scramble addresses without knowing that the addresses are really points
on a path. Since these two validation types produce these apparent bugs,
an application cannot use the gxApHeapValidation and
gxFontHeapValidation options to ensure that QuickDraw GX has no
internal bugs. These validation types are useful in tracking down bugs
related to QuickDraw GX memory management. ▲

For additional information about using QuickDraw GX memory, see the chapter
“QuickDraw GX Memory Management.”

The GXSetValidation function is described on page 4-34. The GXGetValidation
function is described on page 4-35.

Validating Objects 4

QuickDraw GX also provides separate functions that validate the parameters passed to
specific objects, their structures, and any internal caches built for specific objects.

You can use the GXValidateAll function to check the type, structure, and internal
caches built for all objects. This is an alternative to using the GXSetValidation
function with the gxInternalValidation and gxAllObjectValidation options
selected, as described in the section “Using Validation Functions” beginning on
page 4-15.

The following functions validate specific objects:

■ The GXValidateColorSet function checks parameters for the color space,
color-value array, owner count, and tag list properties for the specified color set object.
The GXValidateColorSet function is described on page 4-38.

■ The GXValidateColorProfile function checks the specified color profile
object. The GXValidateColorProfile function is described on page 4-39.
4-20 Using QuickDraw GX Debugging

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
■ The GXValidateGraphicsClient function checks all properties of a specified
graphics client object. The GXValidateGraphicsClient function is described on
page 4-42.

■ The GXValidateInk function checks parameters for the color, transfer mode,
attributes, owner count, and tag list properties for a specified ink object. The
GXValidateInk function is described on page 4-37.

■ The GXValidateShape function checks parameters for the type, geometry, fill, style,
ink, transform, attributes, owner count, and tag list properties for a specified shape
object. The GXValidateShape function is described on page 4-36.

■ The GXValidateStyle function checks parameters for the pen size, cap, join, dash,
pattern, curve error, attributes, text face, text size, justification, font variations,
platform, text attributes properties, run controls, run features array, glyph
substitutions array, kerning adjustments, priority justification override, and glyph
justification overrides array properties for the specified style object. The
GXValidateStyle function is described on page 4-36.

■ The GXValidateTag function checks the parameters for the tag type, size, contents,
and owner count properties for a specified tag object. The GXValidateTag function
is described on page 4-39.

■ The GXValidateTransform function checks the parameters for the clip, mapping,
view port list, hit-test parameters, attributes, owner count, and tag list properties for a
specified transform object. The GXValidateTransform function is described on
page 4-38.

■ The GXValidateViewDevice function checks parameters for the clip, mapping,
bitmap, attributes, and tag list properties for a specified view device object. The
GXValidateViewDevice function is described on page 4-40.

■ The GXValidateViewPort function checks parameters for the clip, mapping, dither,
halftone, parent view port, child view port list, view device, attributes, owner count,
and tag list properties for all view port objects. The GXValidateViewPort function
is described on page 4-40.

■ The GXValidateViewGroup function checks parameters for the clip, mapping,
dither, halftone, parent view port, child view port list, view device, attributes, owner
count, and tag list properties of the view port object and the clip, mapping, bitmap,
attributes, and tag list properties of the view device object. The
GXValidateViewGroup function is described on page 4-41.

Analyzing the Cause of Validation Errors 4

You can use the GXGetValidationError function to determine the function and
parameter that caused the last validation error. This function works like other
QuickDraw GX functions that return variable-length data. There are three steps:

1. Call the function to determine the length of data that will be returned. If no validation
error is posted, a 0 is returned.

2. Allocate memory to store the data that will be returned.

3. Call the function a second time to obtain pointers to the function, parameter name,
and parameter number that caused the validation error.
Using QuickDraw GX Debugging 4-21

C H A P T E R 4

QuickDraw GX Debugging
Listing 4-1 gives an example of using the GXGetValidationError function to obtain
the function and parameter that caused the last validation error. The
GXGetValidationError function is described on page 4-35.

Listing 4-1 Determining the function and parameter that caused the last validation error

static void DisplayErrorMessage(gxGraphicsError errorID,

long context)

{

 char buffer[255];

 void * graphicsObject;

long argNum;

if (GXGetValidationError(buffer, &thing, &argNum)) {

GXValidationError(buffer, nil, nil);

printf(“gxValidationError: %ld (routine: %s) “,

errorID, buffer);

printf(“(argument[%ld]: 0x081x)\n”,argNum, graphicsObject);

} else

printf(“gxGraphicsError: 0x%081x\n”, errorID);

}

Distinguishing Between Application Bugs and QuickDraw GX Bugs 4

All QuickDraw GX functions have been extensively tested prior to shipment. However,
during your application debugging process, you may find anomalous behavior that you
attribute to QuickDraw GX private functions.

Validation checking allows you to distinguish between your application bugs and
QuickDraw GX bugs. If QuickDraw GX posts validation errors when internal validation
is set, but not when public validation is set, it is possible that you have found an error in
the QuickDraw GX internal private code. Please contact Apple Developer Technical
Support and provide a detailed report of the bug encountered. For more information
concerning public and internal validation modes, see the section “Controlling
Validation” beginning on page 4-15.

Detecting Corrupted Objects 4

Normally, there is no way for an application using the public interface to corrupt the
content of an object. If an error occurs with structure validation and not with type
validation, either the error is a QuickDraw GX error or the application has corrupted
memory. The most probable method of corrupting memory is by calling the
GXGetShapeStructure function and altering the content directly or by writing
randomly into memory. For more information concerning type and structure validation
levels, see the section “Controlling Validation” beginning on page 4-15.
4-22 Using QuickDraw GX Debugging

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
Debugging With GraphicsBug 4
GraphicsBug reads and verifies only graphics objects. It does not create objects, dispose
of objects, or modify objects in any manner. GraphicsBug never interferes with an
application and does not cause bugs to appear or disappear.

Table 4-11 summarizes the GraphicsBug commands. This list is available online by
typing “?”, “help”, or “HELP” when in the command line of GraphicsBug. You can copy
or save the brief explanations as a text file.

Table 4-11 GraphicsBug commands and responses

Command Response

DA
[bu(sy)
di(rect)
fr(ee)
i(ndirect)
t(emp) u(n)b(usy)
 u(n)l(oaded)]
[<type>[type>...]]

Display all blocks in the heap, or all that
match parameters. Example: DA bu
line layout polygon.

DM addr[n|t(ype)] Display memory from addr for n bytes
or as a type. Example: DM 1b2358 t.

DV Display version.

ER number Display error name that matches this
number.

F addr[number[start[end]]]
[bu(sy)
di(rect)
fr(ee)
i(ndirect)
t(emp) u(n)b(usy)
 u(n)l(oaded)]
[<type>[type>...]]

Find references to addr in the heap
blocks that match parameters. Example:
F 0x4456A 3 ul picture.

FL addr[filename] Display the stream produced by
flattening this shape. Example: FL
0x3321A “flat shapes”.

GG Display graphics globals

HC Check the heap.

HD
[bu(sy)
di(rect)
fr(ee)
i(ndirect)
t(emp) u(n)b(usy) u(n)l(oaded)]
HD [<type> [<type>...]]

Dump the heap or the heap parts that
match parameters. Example: HD bu
line layout polygon.

continued
Using QuickDraw GX Debugging 4-23

C H A P T E R 4

QuickDraw GX Debugging
In addition to the GraphicsBug commands above, you can Option-double-click (hold
down the Option key and double-click) on a memory address to display memory as a
type, use the up/down arrow keys to set the scrolling speed, use dot ‘.’ to represent the
last displayed address, and use shape as an argument to the DA, F, and HD commands to
display all graphics client-owned shapes.

HT Total the heap.

HX addr|<heapname> Switch to the heap containing addr, or
named <heapname>. Example: HX
System.

HZ List the known heaps.

IG Display initialization globals.

LC (process) List the known graphics clients.

LP List the known processes that have a
graphics client.

CG Display other (generic, nongraphic)
globals.

Q Quit.

UF filename[page number] Display the contents of the file by
flattening it. Use page number to specify
a page of a print file.

V [addr] Validate all (no parameters) or validate
specific block.

GG Graphics globals.

WH addr Display the block containing addr.
Operators: –, +, *, /, %, ^, |, &, [, @, *,],
~, (,)
Numbers: .0x$#3 “strings: “”

Table 4-11 GraphicsBug commands and responses (continued)

Command Response
4-24 Using QuickDraw GX Debugging

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
Analyzing a Picture Shape 4

The following sections demonstrate the use of GraphicsBug for the analysis of a picture
containing seven shapes. The code that creates the picture and the analysis of the data
stream for each flattened shape is given in the section “Analyzing the Data Streams of
Flattened Shapes” in the chapter “QuickDraw GX Stream Format.”

Determining the Heap Size for All Shapes in the Picture 4

You can use the GraphicsBug HT command to display the heap total in bytes for a
specified graphics client heap. First run the application, then select the graphics client
heap from the GraphicsBug heap menu, then apply the HT command. Listing 4-2 showsa
sample output of the HT command: the GraphicsBug heap size in bytes. Note that the
size of the graphics client and its heap is 86724 bytes. You can use this procedure to select
the initial size of your application’s graphics client heap or heaps. For additional
information about specifying the size of your graphics client heap, see the section
“Creating a Graphics Client and its Graphics Client Heap” in the chapter “QuickDraw
GX Memory Management.”

Listing 4-2 Totaling the graphics client and its heap

Totaling the heap at 00c07de8 (all shapes heap).

 Total Blocks Total of Block Sizes

Free 0000001b # 27 0000fff8 # 65528

Direct 00000044 # 68 00001dbc # 7612

Indirect 00000047 # 71 000031bc # 12732

Sub Heaps 00000000 # 0 00000000 # 0

Heap Size 000000a6 # 166 000152c4 # 86724

Analyzing the Shapes in the Picture 4

You can use the GraphicsBug HD PIC command to display the memory locations of the
seven shapes in the picture. Listing 4-3 shows the GraphicsBug output for the picture
shape created by the application “all shapes.” User input is shown in boldface.

The GraphicsBug command lines shown in Listing 4-3 are used as follows:

■ hd pic command turns pic into picture.

■ dm 00c0886c t command displays default picture data.

■ dm 00c0a4a0 t displays the data for the picture with seven shapes. Note that there are
multiple text shapes displayed because the gxUniqueItemsShape attribute was set.
Using QuickDraw GX Debugging 4-25

C H A P T E R 4

QuickDraw GX Debugging
Listing 4-3 Determining the memory locations of the shapes in the picture

hx "all shapes"

heap set to 00c07de8 "all shapes"

hd pic

 Start Length ∆ Typ Busy Mstr Ptr Temp TBsy Disk Object
00c0886c 00000048+00 i 00c1d02c picture

00c0a4a0 00000108+00 i 00c1d010 picture

 Total Blocks Total of Block Sizes

Blocks 00000002 # 2 00000150 # 336

dm 00c0886c t

displaying picture gxShape from 00c0886c

 devShape nil

 owners 1

 seed 0

 flags isDefaultShape

 attributes gxMapTransformShape

 gxStyle 00c083b0

 gxInk 00c08460

 gxTransform 00c088b4

 tagList nil

 cacheList nil

 geo.flags 0

 fillType evenOddFill

 entries 0

 references 00000000

 gxShape (type) gxStyle gxInk gxTransform

dm 00c0a4a0 t

displaying picture gxShape from 00c0a4a0

 devShape 00c0a98c

 owners 1

 seed 0

 flags 0

 attributes

/*

There are multiple text shapes because the gxUniqueItemsShape attribute was

set.

*/

 gxStyle 00c083b0

 gxInk 00c08460

 gxTransform 00c088b4

 tagList nil

 cacheList nil
4-26 Using QuickDraw GX Debugging

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
 geo.flags 0

 fillType evenOddFill

 entries 12

 references 00c08d1c

 gxShape (type) gxStyle gxInk gxTransform

 00c08dd0 (line) 00000000 00000000 00000000

 00c0949c (rectangle) 00000000 00000000 00000000

 00c099e4 (curve) 00000000 00000000 00000000

 00c09bd0 (path) 00000000 00000000 00000000

 00c0a220 (text) 00000000 00000000 00000000

 00c0a220 (text) 00c0a268 00c08e1c 00c0997c

 00c0a220 (text) 00c0a268 00c09b98 00c0a350

 00c0a220 (text) 00c0a268 00c0a640 00c0bc30

 00c0a220 (text) 00c0a268 00c0a678 00c0a6b0

 00c0a220 (text) 00c0a268 00c0a750 00c0a788

 00c0a828 (polygon) 00000000 00000000 00000000

 00c0bc94 (bitmap) 00000000 00000000 00000000

Analyzing the Rectangle in the Picture 4

You can use the dm command or Option-double-click command on the memory location
of one of the seven shapes from Listing 4-3 to display information about the shape.
Listing 4-4 shows the GraphicsBug output for the rectangle shape. The command line is
shown in boldface.

Listing 4-4 Analyzing the rectangle shape in the picture

dm 00c0949c t

Displaying rectangle gxShape from 00c0949c

 devShape nil

 owners 1

 seed 0

 flags 0

 attributes no attributes

 gxStyle 00c0984c

 gxInk 00c098fc

 gxTransform 00c0961c

 tagList nil

 cacheList nil

 geo.flags 0

 fillType closedFrameFill

{ 150.0000, 25.0000} { 200.0000, 75.0000}
Using QuickDraw GX Debugging 4-27

C H A P T E R 4

QuickDraw GX Debugging
Analyzing the Ink in the Rectangle 4

You can select a memory location of one of the objects in the rectangle from Listing 4-4
and use the dm command or GraphicsBug Option-double click command to display
information about the object. Listing 4-5 shows the GraphicsBug output for the ink in the
rectangle shape. The command line is shown in boldface.

Listing 4-5 Analyzing the ink in the rectangle shape

dm 00c098fc t

Displaying gxInk from 00c098fc

 devInk 00c094e8

 privateFlags 0

 attributes 0

 owners 1

 seed 0

 tagList nil

 space gxRGBSpace

 profile nil

 value(s) 1.0000 (ffff) 0.0000 0x0000 0.0000 0x0000

 mode gxCopyMode

QuickDraw GX Debugging Reference 4

This section describes the data structures and routines that are specific to the QuickDraw
GX debugging environment.

The “Constants and Data Types” section shows the enumerations and structures for
drawing errors and GraphicsBug parameters. A cross-reference is provided to the
enumerated validation levels.

Constants and Data Types 4
This section describes the constants and data structures that you use to provide
information to debugging functions.
4-28 QuickDraw GX Debugging Reference

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
Drawing Errors 4

QuickDraw GX posts drawing errors when you use the GXGetShapeDrawError
function after an unsuccessful drawing operation. The gxDrawError enumeration
defines the posted drawing errors.

enum gxDrawErrors {

no_draw_error,

/* gxShape type errors */

shape_emptyType,

shape_inverse_fullType,

rectangle_zero_width,

rectangle_zero_height,

polygon_empty,

path_empty,

bitmap_zero_width,

bitmap_zero_height,

text_empty,

glyph_empty,

layout_empty,

picture_empty,

/* general gxShape errors */

shape_no_fill,

shape_no_enclosed_area,

shape_no_enclosed_pixels,

shape_very_small,

shape_very_large,

shape_contours_cancel,

/* gxStyle errors */

pen_too_small,

text_size_too_small,

dash_empty,

start_cap_empty,

pattern_empty,

textFace_empty,

shape_primitive_empty,

shape_primitive_very_small,
QuickDraw GX Debugging Reference 4-29

C H A P T E R 4

QuickDraw GX Debugging
/* gxInk errors */

transfer_equals_noMode,

transfer_matrix_ignores_source,

transfer_matrix_ignores_device,

transfer_source_reject,

transfer_mode_ineffective,

colorSet_no_entries,

bitmap_colorSet_one_entry,

/* gxTransform errors */

transform_scale_too_small,

transform_map_too_large,

transform_move_too_large,

transform_scale_too_large,

transform_rotate_too_large,

transform_perspective_too_large,

transform_skew_too_large,

transform_clip_no_intersection,

transform_clip_empty,

transform_no_viewPorts,

/* gxViewPort errors */

viewPort_disposed,

viewPort_clip_empty,

viewPort_clip_no_intersection,

viewPort_scale_too_small,

viewPort_map_too_large,

viewPort_move_too_large,

viewPort_scale_too_large,

viewPort_rotate_too_large,

viewPort_perspective_too_large,

viewPort_skew_too_large,

viewPort_viewGroup_offscreen,

/* gxViewDevice errors */

viewDevice_clip_no_intersection,

viewDevice_scale_too_small,

viewDevice_map_too_large,

viewDevice_move_too_large,

viewDevice_scale_too_large,

viewDevice_rotate_too_large,
4-30 QuickDraw GX Debugging Reference

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
viewDevice_perspective_too_large,

viewDevice_skew_too_large

};

typedef long gxDrawError;

Table 4-2 through Table 4-7 list the drawing errors and give a description of each error.

Validation Levels 4

The GXSetValidation function uses the gxValidationLevel enumeration to turn
off or to control the QuickDraw GX validation.

typedef long gxValidationLevel;

enum gxValidationLevels {

/*

These levels tell how to validate routines. Choose one.

*/

gxNoValidation = 0x00,

gxPublicValidation = 0x01,

gxInternalValidation = 0x02,

/*

These levels tell how to validate types. Choose one.

*/

gxTypeValidation = 0x00,

gxStructureValidation = 0x10,

gxAllObjectValidation = 0x20,

/*

These levels tell how to validate memory manager blocks. Choose

any combination.

*/

gxNoMemoryManagerValidation = 0x0000,

gxApBlockValidation = 0x0100,

gxFontBlockValidation = 0x0200

gxApHeapValidation = 0x0400,

gxFontHeapValidation = 0x0800,

gxCheckApHeapValidation = 0x1000,

gxCheckFontHeapValidation = 0x2000

} ;
QuickDraw GX Debugging Reference 4-31

C H A P T E R 4

QuickDraw GX Debugging
Field descriptions

gxNoValidation
If set, QuickDraw GX performs no validation checking.

gxPublicValidation
If set, QuickDraw GX checks parameters to public routines.

gxInternalValidation
If set, QuickDraw GX checks parameters to internal routines.

gxTypeValidation
If set, QuickDraw GX checks types of objects.

gxStructureValidation
If set, QuickDraw GX checks fields of private structures.

gxAllObjectValidation
If set, QuickDraw GX checks every object for each public routine
called.

gxNoMemoryManagerValidation
If set, QuickDraw GX does not check Memory Management calls.

gxApBlockValidation
If set, QuickDraw GX checks the relevant block structures before
each Memory Manager call.

gxFontBlockValidation
If set, QuickDraw GX also checks the system heap block structures..

gxApHeapValidation
If set, QuickDraw GX also checks all application heap blocks every
time the heap changes.

gxFontHeapValidation
If set, QuickDraw GX also checks all system heap blocks every time
the heap changes..

gxCheckApHeapValidation
If set, QuickDraw GX also checks all application heap blocks for
each public or internal routine called.

gxCheckFontHeapValidation
If set, QuickDraw GX also checks the system heap blocks for each
public or internal routine called.

For information on how to use QuickDraw GX validation, see the section “Using
Validation Functions” beginning on page 4-15. The GXSetValidation function is
described on page 4-34.
4-32 QuickDraw GX Debugging Reference

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
Functions 4
The functions described in this section allow you to detect drawing errors, perform
validation, and install debugging utility functions.

Obtaining Drawing Errors 4

This section describes the function that allows you to obtain a single error message that
describes why a shape did not draw correctly.

GXGetShapeDrawError 4

You can use the GXGetShapeDrawError function to determine why a shape failed to
draw.

gxDrawError GXGetShapeDrawError(gxShape source);

source A reference to the shape that didn’t draw.

function result An error result code indicating why a shape didn’t draw.

DESCRIPTION

The GXGetShapeDrawError function returns a single error code that indicates why a
shape didn’t draw. The error returneddepends on the step in the drawing process in
which the drawing error occurred. QuickDraw GX returns the first drawing error it
detects in the drawing process. A drawing error that may occur later in the drawing
process is not returned until all prior drawing errors detected are resolved.

If you run your application and it does not draw what you expect, you can add the
GXGetShapeDrawError function to the end of your application code and rerun your
application. QuickDraw GX returns a single error from the gxDrawErrors enumeration
that may assist in determining the drawing problem. If a drawing error is not detected,
QuickDraw GX returns a gxNoDrawError error.

SEE ALSO

The use of the GXGetShapeDrawError is discussed in the section “Analyzing Drawing
Problems” beginning on page 4-8.

The gxDrawError enumeration is described in the section “Drawing Errors” beginning
on page 4-29.

Table 4-2 through Table 4-7 provide a description of each drawing error.

Table 4-1 gives the object processing sequence that determines which drawing error is
posted.
QuickDraw GX Debugging Reference 4-33

C H A P T E R 4

QuickDraw GX Debugging
Setting and Getting Validation Options and Errors 4

This section describes the functions that control QuickDraw GX validation. QuickDraw
GX validation checks public and internal function parameters to ensure that they are
valid. You can use validation functions and flag options to check types, structures, all
objects, memory, and specific objects.

When validation error checking is on, QuickDraw GX may post the validation errors
listed in the section “Debugging Version” in the chapter “Errors, Warnings, and Notices.”

GXSetValidation 4

You can use the GXSetValidation function to control the type and level of validation
checking.

void GXSetValidation(gxValidationLevel);

gxValidationLevel
The validation flags.

DESCRIPTION

The GXSetValidation function allows you to set the validation mode, as well as the
validation levels, for type, structure, all object, and memory block validation options.
You may pick one mode, one level, and any combination of memory options. The
options are defined by the gxValidationLevel enumeration.

The GXSetValidation function turns validation on when you select any flags other
than 0x00. If you set the gxValidationLevel flag to gxNoAttributes, validation is
off.

This function has no effect in the non-debugging version of QuickDraw GX.

As an alternative to the use of the GXSetValidation function with the internal and all
object validation flags set, you can use the GXValidateAll function.

SEE ALSO

To get the current gxValidationLevel parameter, use the GXGetValidation
function, described on page 4-35.

The gxValidationLevel enumeration is described in the section “Validation Levels”
beginning on page 4-31.

Table 4-8 on page 4-16 lists the public and internal validation options.

Table 4-9 on page 4-16 lists the type, structure, and all object validation options.

Table 4-10 on page 4-19 lists the memory validation options.

The GXValidateAll function is described on page 4-43.
4-34 QuickDraw GX Debugging Reference

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
GXGetValidation 4

You can use the GXGetValidation function to obtain the current validation flags that
are set.

gxValidationLevel GXGetValidation(void);

function result The current flags set for validation error checking.

DESCRIPTION

The GXGetValidation function returns the gxValidationLevel parameter set by
the GXSetValidation function.

This function always returns 0 in the non-debugging version of QuickDraw GX.

SEE ALSO

The GXSetValidation function is described in the previous section.

GXGetValidationError 4

You can use the GXGetValidationError function to determine the application
function and parameter that caused the last validation error.

void GXGetValidationError(char *procedureName, void **argument,

long *argumentNumber);

procedureName
A pointer to the name of the function that produced the validation error.

argument A pointer to a list of the function’s arguments.

argumentNumber
A pointer to the number of the argument that produced the validation
error.

DESCRIPTION

The GXGetValidationError function provides the name of the function, a list of the
function’s parameters, and the number of the parameter that produced the last
validation error. The argumentNumber parameter for the nth parameter is n. For
example, the argumentNumber for the third parameter is 3. If you call the
GXGetValidationError function and no validation errors have been posted, the
function returns nil.

This function leaves its arguments unchanged in the non-debugging version of
QuickDraw GX.
QuickDraw GX Debugging Reference 4-35

C H A P T E R 4

QuickDraw GX Debugging
SEE ALSO

The use of the GXGetValidationError function is described in the section
“Analyzing the Cause of Validation Errors” beginning on page 4-21.

Validating Objects 4

This section describes the functions that allow you to validate the function parameters of
allocated QuickDraw GX objects. QuickDraw GX provides functions for specific object
validation and all object validation.

When validation error checking is on, QuickDraw GX may post the validation errors
listed in the section “Debugging Version” in the chapter “Errors, Warnings, and Notices.”

GXValidateShape 4

You can use the GXValidateShape function to check the parameters of a shape object.

void GXValidateShape(gxShape target);

target A reference to a shape object to be validated.

DESCRIPTION

The GXValidateShape function checks parameters for the type, geometry, fill, style,
ink, transform, attributes, owner count, and tag list properties for all shape objects. In
addition, this function checks any internal caches built for the shape. If one or more of
the parameters are not valid, a validation error is posted.

This function is not operational in the non-debugging version of QuickDraw GX.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is discussed in the section “Controlling
Validation” beginning on page 4-15.

GXValidateStyle 4

You can use the GXValidateStyle function to check the parameters of a style object.

void GXValidateStyle(gxStyle target);

target A reference to a style object to be validated.
4-36 QuickDraw GX Debugging Reference

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
DESCRIPTION

The GXValidateStyle function checks parameters for the pen size, cap, join, dash,
pattern, curve error, and attributes properties for all graphics style objects. It also checks
parameters for the text face, text size, justification, font variations, platform, and text
attributes properties for all typographic style objects. In addition, it confirms parameters
for the run controls, run features array, glyph substitutions array, kerning adjustments,
priority justification override, and glyph justification overrides array typographic
properties for all layout shapes objects. In addition, this function checks any internal
caches built for the style. If one or more parameters are not valid, QuickDraw GX posts a
validation error.

This function is not operational in the non-debugging version of QuickDraw GX. If a
discrepancy is found, QuickDraw GX posts an error.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

GXValidateInk 4

You can use the GXValidateInk function to check the parameters of an ink object.

void GXValidateInk(gxInk target);

target A reference to an ink object to be validated.

DESCRIPTION

The GXValidateInk function checks parameters for the color, transfer mode, attributes,
owner count, and tag list properties for all ink objects. In addition, this function checks
any internal caches built for the ink. If one or more of the parameters are not valid,
QuickDraw GX posts a validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.
QuickDraw GX Debugging Reference 4-37

C H A P T E R 4

QuickDraw GX Debugging
GXValidateTransform 4

You can use the GXValidateTransform function to check the parameters of a
transform object.

void GXValidateTransform(gxTransform target);

target A reference to a transform object to be validated.

DESCRIPTION

The GXValidateTransform function checks the parameters for the clip, mapping,
view port list, hit-test parameters, attributes, owner count, and tag list properties for all
transform objects. In addition, this function checks any internal caches built for
the transform. If one or more of the parameters are not valid, QuickDraw GX posts a
validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

GXValidateColorSet 4

You can use the GXValidateColorSet function to check the parameters of a color set
object.

void GXValidateColorSet(gxColorSet target);

target A reference to a color set object to be validated.

DESCRIPTION

The GXValidateColorSet function checks parameters for the color space, color-value
array, owner count, and tag list properties for all color set objects. In addition, this
function checks any internal caches built for the color set. If one or more of the
parameters are not valid, QuickDraw GX posts a validation error.

This function is not operational in the non-debugging version of QuickDraw GX.
4-38 QuickDraw GX Debugging Reference

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

GXValidateColorProfile 4

You can use the GXValidateColorProfile function to check the parameters of a
color profile object.

void GXValidateColorProfile(gxColorProfile target);

target A reference to a color profile object to be validated.

DESCRIPTION

The GXValidateColorProfile function checks the content of the target color profile
object. In addition, this function checks any internal caches built for the color profile. If
one or more of the parameters are not valid, QuickDraw GX posts a validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

GXValidateTag 4

You can use the GXValidateTag function to check the parameters of a tag object.

void GXValidateTag(gxTag target);

target A reference to a tag object to be validated.

DESCRIPTION

The GXValidateTag function checks the parameters for the tag type, size, contents, and
owner count properties for all tag objects. In addition, this function checks any internal
caches built for the tag. If one or more of the parameters are not valid, QuickDraw GX
posts a validation error.

This function is not operational in the non-debugging version of QuickDraw GX.
QuickDraw GX Debugging Reference 4-39

C H A P T E R 4

QuickDraw GX Debugging
SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

GXValidateViewDevice 4

You can use the GXValidateViewDevice function to check the parameters of a view
device object.

void GXValidateViewDevice(gxViewDevice target);

target A reference to a view device object to be validated.

DESCRIPTION

The GXValidateViewDevice function checks parameters for the clip, mapping,
bitmap, attributes, and tag list properties for all view device objects. In addition, this
function checks any internal caches built for the view device. If one or more of the
parameters are not valid, QuickDraw GX posts a validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

GXValidateViewPort 4

You can use the GXValidateViewPort function to check the parameters of a view port
object.

void GXValidateViewPort(gxViewPort target);

target A reference to a view port object to be validated.
4-40 QuickDraw GX Debugging Reference

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
DESCRIPTION

The GXValidateViewPort function checks parameters for the clip, mapping, dither,
halftone, parent view port, child view port list, view device, attributes, owner count, and
tag list properties for all view port objects. In addition, this function checks any internal
caches built for the view port. If one or more of the parameters are not valid, QuickDraw
GX posts a validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

GXValidateViewGroup 4

You can use the GXValidateViewGroup function to check the parameters of a view
group object.

void GXValidateViewGroup(gxViewGroup target);

target A reference to a view group object to be validated.

DESCRIPTION

The GXValidateViewGroup function checks parameters for the clip, mapping, dither,
halftone, parent view port, child view port list, view device, attributes, owner count, and
tag list properties of the view port object and the clip, mapping, bitmap, attributes,
and tag list properties of the view device object. In addition, this function checks any
internal caches built for the view group. If one or more of the parameters are not valid,
QuickDraw GX posts a validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.
QuickDraw GX Debugging Reference 4-41

C H A P T E R 4

QuickDraw GX Debugging
GXValidateGraphicsClient 4

You can use the GXValidateGraphicsClient function to check the parameters of a
graphics client object.

void GXValidateGraphicsClient(gxGraphicsClient target);

target A reference to a graphics client object to be validated.

DESCRIPTION

The GXValidateGraphicsClient checks all parameters for all properties of a
graphics client object. In addition, this function checks any internal caches built for
the graphics client. If one or more of the parameters are not valid, QuickDraw GX posts a
validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.
4-42 QuickDraw GX Debugging Reference

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
GXValidateAll 4

You can use the GXValidateAll function to validate all objects that are allocated.

void GXValidateAll(void);

DESCRIPTION

The GXValidateAll function allows you to validate the parameters of all objects that
are allocated in the QuickDraw GX heap. It also checks additional structures in the
backing store. In addition, this function checks any internal caches built for the objects. If
one or more of the parameters are not valid, QuickDraw GX posts a validation error.

This function is not operational in the non-debugging version of QuickDraw GX.

An alternative method of validating all of the objects in the heap is to use the
GXSetValidation function with the gxValidationLevel parameter set to the
gxPublicValidation plus gxAllObjectValidation options.

SEE ALSO

QuickDraw GX validation is introduced in the section “Validation Functions” beginning
on page 4-6. The use of validation functions is described in the section “Controlling
Validation” beginning on page 4-15.

The GXSetValidation function is described on page 4-34.
QuickDraw GX Debugging Reference 4-43

C H A P T E R 4

QuickDraw GX Debugging
Summary of QuickDraw GX Debugging 4

Constants and Data Types 4

Drawing Errors

typedef long gxDrawError;

enum gxDrawErrors {

no_draw_error,

/* gxShape type errors */

shape_emptyType,

shape_inverse_fullType,

rectangle_zero_width,

rectangle_zero_height,

polygon_empty,

path_empty,

bitmap_zero_width,

bitmap_zero_height,

text_empty,

glyph_empty,

layout_empty,

picture_empty,

/* general gxShape errors */

shape_no_fill,

shape_no_enclosed_area,

shape_no_enclosed_pixels,

shape_very_small,

shape_very_large,

shape_contours_cancel,

/* gxStyle errors */

pen_too_small,

text_size_too_small,

dash_empty,

start_cap_empty,

pattern_empty,

textFace_empty,
4-44 Summary of QuickDraw GX Debugging

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
shape_primitive_empty,

shape_primitive_very_small,

/* gxInk errors */

transfer_equals_noMode,

transfer_matrix_ignores_source,

transfer_matrix_ignores_device,

transfer_source_reject,

transfer_mode_ineffective,

colorSet_no_entries,

bitmap_colorSet_one_entry,

/* gxTransform errors */

transform_scale_too_small,

transform_map_too_large,

transform_move_too_large,

transform_scale_too_large,

transform_rotate_too_large,

transform_perspective_too_large,

transform_skew_too_large,

transform_clip_no_intersection,

transform_clip_empty,

transform_no_viewPorts,

/* gxViewPort errors */

viewPort_disposed,

viewPort_clip_empty,

viewPort_clip_no_intersection,

viewPort_scale_too_small,

viewPort_map_too_large,

viewPort_move_too_large,

viewPort_scale_too_large,

viewPort_rotate_too_large,

viewPort_perspective_too_large,

viewPort_skew_too_large,

viewPort_viewGroup_offscreen,

/* gxViewDevice errors */

viewDevice_clip_no_intersection,

viewDevice_scale_too_small,

viewDevice_map_too_large,

viewDevice_move_too_large,

viewDevice_scale_too_large,
Summary of QuickDraw GX Debugging 4-45

C H A P T E R 4

QuickDraw GX Debugging
viewDevice_rotate_too_large,

viewDevice_perspective_too_large,

viewDevice_skew_too_large

};

Validation Levels

typedef long gxValidationLevel;

enum gxValidationLevels {

/*

These levels tell how to validate routines. Choose one.

*/

gxNoValidation = 0x00, /* no validation */

gxPublicValidation = 0x01, /* check parameters to public routines */

gxInternalValidation = 0x02, /* check parameters to internal routines */

/*

These levels tell how to validate types. Choose one.

*/

gxTypeValidation = 0x00, /* check types of objects */

gxStructureValidation = 0x10, /* check fields of private structures */

gxAllObjectValidation = 0x20, /* check every object over every call */

/*

These levels tell how to validate memory manager blocks. Choose any

combination.

*/

gxNoMemoryManagerValidation = 0x0000,/* no memory validation */

gxApBlockValidation = 0x0100, /* check the relevant block

 structures after each Memory Manager

 call */

gxFontBlockValidation = 0x0200/* check the system gxHeap as well */

gxApHeapValidation = 0x0400, /* check the memory manager’s gxHeap after

every memory call */

gxFontHeapValidation= 0x0800, /* also check the system gxHeap */

gxCheckApHeapValidation = 0x1000,

/* check the memory manager’s

 gxHeap if checking routine

 parameters */
4-46 Summary of QuickDraw GX Debugging

C H A P T E R 4

QuickDraw GX Debugging

4
Q

uickD
raw

 G
X

 D
ebugging
gxCheckFontHeapValidation = 0x2000

/* check the system gxHeap as

 well */

} ;

Functions 4

Obtaining Drawing Errors

gxDrawError GXGetShapeDrawError
(gxShape source);

Setting and Getting Validation Options and Errors

void GXSetValidation (gxValidationLevel);

gxValidationLevel GXGetValidation
(void);

void GXGetValidationError (char *procedureName, void **argument,
long *argumentNumber);

Validating Objects

void GXValidateShape (gxShape target);

void GXValidateStyle (gxStyle target);

void GXValidateInk (gxInk target);

void GXValidateTransform (gxTransform target);

void GXValidateColorSet (gxColorSet target);

void GXValidateColorProfile
(gxColorProfile target);

void GXValidateTag (gxTag target);

void GXValidateViewDevice (gxViewDevice target);

void GXValidateViewPort (gxViewPort target);

void GXValidateViewGroup (gxViewGroup target);

void GXValidateGraphicsClient
(gxGraphicsClient target);

void GXValidateAll (void);
Summary of QuickDraw GX Debugging 4-47

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 QuickDraw GX and the Macintosh Environment TOC
	 QuickDraw GX and the Macintosh
	 QuickDraw GX Memory Management TOC
	 QuickDraw GX Memory Management
	 Errors, Warnings, and NoticesTOC
	 Errors, Warnings, and Notices
	 QuickDraw GX Debugging TOC
	QuickDraw GX Debugging
	About QuickDraw GX Debugging
	Debugging Version of QuickDraw GX
	QuickDraw GX Errors, Warnings, and Notices
	Application-Defined Error, Warning, and Notice Han...
	The Drawing Error Function
	Validation Functions
	MacsBug and GraphicsBug

	Using QuickDraw GX Debugging
	Analyzing Drawing Problems
	Using Validation Functions
	Controlling Validation
	Validating Objects
	Analyzing the Cause of Validation Errors
	Distinguishing Between Application Bugs and QuickD...
	Detecting Corrupted Objects

	Debugging With GraphicsBug
	Analyzing a Picture Shape

	QuickDraw GX Debugging Reference
	Constants and Data Types
	Drawing Errors
	Validation Levels

	Functions
	Obtaining Drawing Errors
	Setting and Getting Validation Options and Errors
	Validating Objects

	Summary of QuickDraw GX Debugging
	Constants and Data Types
	Functions

	 Collection Manager TOC
	 Collection Manager
	 Message Manager TOC
	 Message Manager
	 QuickDraw GX Stream Format TOC
	 QuickDraw GX Stream Format
	 QuickDraw GX Mathematics TOC
	 QuickDraw GX Mathematics
	 Glossary
	 Index
	 Colophon

