

C H A P T E R 1 1

11

E
thernet, Token R

ing, and F
iber D

istributed D
ata Interfac

Ethernet, Token Ring, and Fiber Distributed Data Interface 11

This chapter describes how to write data directly to an Ethernet, token ring, or Fiber
Distributed Data Interface (FDDI) driver. For Ethernet Phase 1 packets, that is, the
original version of Ethernet packets, this chapter also describes how to read data
directly from an Ethernet driver using either the default protocol handler that Apple
provides or your own protocol handler.

For Phase 2 packets, that is, IEEE 802.2 packets, you must use the interface to the
Link-Access Protocol (LAP) Manager to attach your protocol handler to read data
from an Ethernet, token ring, or FDDI driver.

For a description of how to attach a protocol handler to read 802.2 packets, see the
chapter “Link-Access Protocol (LAP) Manager” in this book, which also explains
Ethernet Phase 1 packets and Phase 2 packets for Ethernet, token ring, and FDDI.

For an introduction to the hardware and software of an entire AppleTalk network,
see Understanding Computer Networks and the AppleTalk Network System Overview. For
information on designing circuit cards and device drivers for Macintosh computers,
see Designing Cards and Drivers for the Macintosh Family, second edition.

To use this chapter, you should be familiar with the information on Ethernet and token
ring provided in Inside AppleTalk, second edition. (Inside AppleTalk does not address
FDDI.) To gain an understanding of the relationship between the AppleTalk data links
and the physical device drivers, see the chapter “Introduction to AppleTalk” in this
book, which also introduces some of the terminology used in this chapter.

About Ethernet, Token Ring, and FDDI Support 11

You can write an application that processes packets for a protocol other than AppleTalk
and run your application on Macintosh computers that also run the AppleTalk protocol
stack. To send data from your application, you need to communicate directly with a
network hardware device driver. To read data, you either use the LAP Manager or
directly communicate with the hardware device driver, depending on the type of packet
that your application processes. To read data from the network hardware device driver,
you must use a protocol handler, which is code that the driver calls, in this case, to
process an incoming packet for a specific protocol type.

Ethernet Phase 1 packets are IEEE 802.3 protocol packets. If your application processes
Ethernet Phase 1 packets, you can use the default protocol handler that Apple Computer,
Inc. provides to read data addressed to the protocol type that your application handles,
or you can create and attach your own protocol handler to read that data. The chapter
“Link-Access Protocol (LAP) Manager” in this book provides more information about
Phase 1 and Phase 2 packets, including figures that show the two packet formats.

For Ethernet Phase 1 packets, the Apple Ethernet implementation supports multiple
protocol types, and more than one protocol handler can be attached to the Ethernet
driver at the same time. For example, you can write an application implementing a
protocol stack that uses the default Apple Ethernet protocol handler. Another developer
can write an application implementing a different protocol stack, and it, too, can use the
About Ethernet, Token Ring, and FDDI Support 11-3

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

default Apple Ethernet protocol handler. A third developer can write an application
implementing yet another protocol stack that supplies and attaches its own protocol
handler to the Ethernet driver. All of these applications can run concurrently on the same
machine. Figure 11-1 shows three developer-provided applications that implement
protocol stacks, all using the Ethernet driver at the same time.

Figure 11-1 Using protocol handlers to read data directly from the Ethernet driver

The Ethernet driver maintains a list that identifies the protocol handler for each protocol
type. When you attach your protocol handler to the Ethernet driver, it adds an entry to
its list for the type of protocol that your application supports along with the pointer to
your protocol handler. When a packet arrives for your application, the driver reads the
protocol type, locates the pointer to the protocol handler, and calls the protocol handler
to read the data.

For all 802.2 packets, which includes Ethernet Phase 2 packets and all token ring and
FDDI packets, Apple Computer, Inc. recommends that you attach your protocol handler
using the LAP Manager interface. All AppleTalk packets are 802.2 packets. (For more
information about using the LAP Manager to attach protocol handlers, see the chapter
“Link-Access Protocol [LAP] Manager” in this book.)

At the hardware device driver level, only one protocol handler can be attached to receive
802.2 packets. Although you can attach more than one protocol handler at this level, if
you do so, you will cause problems for AppleTalk. The AppleTalk protocol stack uses the
LAP Manager’s protocol handler for 802.2 packets to connect to a hardware device driver.
(All AppleTalk packets are 802.2 packets.) If you attach your own protocol handler for
802.2 packets, the LAP Manager will be unable to attach its protocol handler, and you will
have excluded AppleTalk from using the hardware device driver simultaneously.

Developer

provided

Developer

provided

Developer

provided

Ethernet

driver

Card

Developer

provided

Data from

network

Protocol handlers Protocol stacks

Apple

default

Ethernet
11-4 About Ethernet, Token Ring, and FDDI Support

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11

E
thernet, Token R

ing, and F
iber D

istributed D
ata Interfac

For example, suppose a user is running your application with its own protocol handler
over token ring and AppleTalk over Ethernet. If the user decides to change the AppleTalk
network type to token ring, the attempted connection switch will fail because the LAP
Manager will not be able to attach its protocol handler to the token ring device driver. To
avoid problems such as these, Apple recommends that you attach your protocol handler
to read Ethernet Phase 2, token ring, or FDDI 802.2 packets through the LAP Manager.

The LAP Manager installs a protocol handler at the hardware device driver level that
receives 802.2 packets and that also serves as a dispatcher. This protocol handler
maintains an index of registered protocol types and pointers to their protocol handlers,
which allows the LAP Manager to act as a dispatcher, thereby permitting the concurrent
use of a token ring or FDDI hardware device driver by more than one application,
including AppleTalk.

Notes for applications that handle token ring and FDDI 802.2 packets

Apple provides specifications for both token ring and FDDI drivers
that result in these implications for network applications:
■ Only one protocol handler can be attached at the hardware device

driver level.
■ Only one protocol type is supported: the IEEE 802.2 Type 1 protocol

that provides for a connectionless, or datagram, service.
■ Apple does not provide a default protocol handler for token ring

or FDDI.

These limitations do not restrict you from attaching your own protocol
handler directly to a token ring or an FDDI hardware device driver, but
doing so results in the consequences stated previously. ◆

About Multivendor Network Interface Controller (NIC) Support 11
Before AppleTalk version 56, a networked Macintosh computer could support only
one Ethernet or token ring connection at a time. This posed a limitation for many
developers who wanted multiple concurrent Ethernet or token ring connections. The
original architecture also lacked support for the concurrent use of a NuBus slot device
and a non-NuBus device, such as a SCSI Ethernet connection or the processor-direct
slot (PDS) device.

To solve this problem, Apple implemented multivendor architecture to provide support
that allows you to use different brands of Ethernet, token ring, or FDDI NuBus hardware
in the same machine at the same time. For example, multivendor architecture allows a
single machine to run AppleTalk over one Ethernet card (or through an Ethernet net-
work connector that uses the SCSI port) and to run another application that implements
a different protocol, such as TCP/IP, over another Ethernet card at the same time.

The user can select the network type to be used depending on the NuBus cards and
slotless devices that are installed in the Macintosh computer. In addition to supporting
various types of network hardware, multivendor architecture allows AppleTalk users to
also select which brand of card to use. Your application can also provide support that
allows a user to select a particular brand of card for a particular type of network
connection.
About Ethernet, Token Ring, and FDDI Support 11-5

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

Figure 11-2 shows three different brands of Ethernet cards installed in a single machine
and indicates the path that data follows from the LAP Manager through the driver of the
selected Ethernet card and out to the network when AppleTalk is used. The user can
choose which Ethernet card is used as the network connector.

Figure 11-2 How AppleTalk uses multivendor support

To make possible the use of multiple brands of network cards, Apple provides a driver
shell for each of the following types of networks:

■ For Ethernet, the name of the driver shell is .ENET.

■ For token ring, the name of the driver shell is .TOKN.

■ For FDDI, the name of the driver shell is .FDDI.

These driver shells consist of commands that locate and load the driver software for a
particular card of that network type.

Note
For configurations that are not NuBus based, such as PDS-based and
SCSI-based hardware solutions, you must open and use the following
drivers, not the driver shells: .ENET0 for Ethernet, .TOKN0 for token
ring, .FDDI0 for FDDI. ◆

The EGetInfo function returns information about the .ENET driver. If the Ethernet
card that you are using has a SONIC chip, you can use the EGetInfo function to
obtain information pertaining to the SONIC-based network interface controller (NIC).
Beginning with version 58 of AppleTalk, the EGetInfo function returns this additional
information. For the details regarding Ethernet cards with SONIC chips, see “EGetInfo”
beginning on page 11-36.

Network

Ethernet cards

Driver

Card A

Driver

Card B

Driver

Card C

LAP

Manager
11-6 About Ethernet, Token Ring, and FDDI Support

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11

E
thernet, Token R

ing, and F
iber D

istributed D
ata Interfac

About Multicast Addressing 11
At the hardware device driver level, Apple supports multicast addressing. A multicast
address is a hardware address that is shared by a subset of nodes on a particular data
link. This is similar in concept to a broadcast hardware address, but a multicast address
is used to send directed broadcasts to the subset group of nodes only, and not to all
nodes on the data link. A broadcast address is shared by all nodes on a particular type of
network. Packets sent to the Ethernet broadcast address are sent to all nodes on the
Ethernet data link. Ethernet and FDDI networks use multicast addresses; the token ring
equivalent of a multicast address is a functional address.

A network type, such as an Ethernet data link, can also have associated with it one or
more multicast addresses. Each data link is identified by a unique hardware address to
which packets for that network hardware are sent. In addition to this unique hardware
address, a data link can receive packets that contain the broadcast address for its own
network type—Ethernet, for example.

When a node on a data link transmits a packet that has a multicast hardware address as
its destination hardware address, then only a specific subset of the nodes on the link will
receive the packet. Each node can have any number of multicast addresses, and any
number of nodes can have the same multicast address. Some nodes on the link may not
have a multicast address; other nodes may have more than one multicast addresses. (For
more information on multicast and functional addresses, see Inside AppleTalk, second
edition. See also “EAddMulti” on page 11-40.)

Using Ethernet, Token Ring, and FDDI Drivers 11

This section describes how to write an application that implements a protocol other than
AppleTalk and that reads data from and writes it to the hardware device driver for a
particular network interface controller.

For Ethernet, this section describes how to locate the installed Ethernet cards and open
the Ethernet driver for a particular card or a slotless device. Then it describes how to
write data to the driver. Next it describes how to attach either the Apple default protocol
handler or your own protocol handler to the Ethernet driver to read data for Ethernet
Phase 1 packets.

For token ring and FDDI, this section describes the differences between using the
Ethernet driver and the token ring or FDDI driver, including the steps to follow to
read data from and write it to this driver.

Using the Ethernet Driver 11
You can write your own protocol stack or application that uses the Ethernet driver
directly rather than going through the LAP Manager. Apple provides an .ENET driver
shell that locates and loads the driver for the selected Ethernet NuBus card. The driver
Using Ethernet, Token Ring, and FDDI Drivers 11-7

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

shell searches the following locations for existing Ethernet driver resources, and it uses
the most current one:

■ the system resource file

■ the card’s declaration ROM

■ the motherboard’s ROM

See Designing Cards and Drivers for the Macintosh Family, second edition, for discussions of
NuBus board IDs and slot resources.

Opening the Ethernet Driver 11

Before you use the Device Manager’s OpenSlot function to open the .ENET driver, you
use the SGetTypeSRsrc function described in the Slot Manager chapter of Inside
Macintosh: Devices to determine which NuBus slots contain Ethernet cards. To find
Ethernet NuBus cards, use the value catNetwork in the field spCategory of the
GetTypeSRsrc function parameter block, and use the value typeEthernet in the field
spCType. If you cannot find any Ethernet NuBus cards, you should also attempt to open
the .ENET0 driver in case non-NuBus Ethernet hardware is attached to the system.
You should provide a user interface that allows the user to select a specific Ethernet card
in the case that more than one is present. (The chapter “Device Manager” in Inside
Macintosh: Devices describes the OpenSlot function.)

Note
This section refers to the .ENET driver shell, which facilitates
multivendor support, as the .ENET driver. When you open the
.ENET driver shell, it loads and opens the particular card’s driver. ◆

Listing 11-1 illustrates how to identify and open an Ethernet driver.

Listing 11-1 Finding an Ethernet card and opening the .ENET driver

FUNCTION Get_And_Open_ENET_Driver: Integer;

VAR

mySBlk: SpBlock;

myPBRec: ParamBlockRec;

myErr: OSErr;

Found: Integer;

ENETRefNum: Integer;

EnetStr: Str15;

Enet0Str: Str15;

BEGIN

Found := 0; {assume no sResource found}

ENETRefNum := 0; {indicate no driver found}
11-8 Using Ethernet, Token Ring, and FDDI Drivers

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11

E
thernet, Token R

ing, and F
iber D

istributed D
ata Interfac

WITH mySBlk DO {set up the SpBlock}

BEGIN

spParamData := 1; {include search of disabled resources }

{ starting searching from spSlot and }

{ the slots above it}

spCategory := catNetwork;

spCType := typeEthernet;

spDrvrSW := 0;

spDrvrHW := 0;

spTBMask := 3; {match only Category and }

{ CType fields}

spSlot := 0; {start search from here}

spID := 0; {start search from here}

spExtDev := 0; {ID of the external device}

END;

.

.

{REPEAT}

.

{At this point you could implement a repeat loop to check }

{ for multiple Ethernet cards. This sample uses the first card.}

.

myErr := SGetTypeSRsrc(@mySBlk);

IF myErr = noErr THEN {found an sResource match; }

{ save it for later}

BEGIN

Found := Found + 1;

(SaveSInfo(@mySBlk); {save slot info for later use}

END;

{until myErr = smNoMoresRsrcs;}

 IF Found > 1 THEN

BEGIN

{If you find more than one sResource, put up a dialog box }

{ to let the user select one. If any of the sResources }

{ that you found were disabled, let the user know that they }

{ are not available.}

{This code sample assumes that the selected slot is }

{ returned in mySBlk.spSlot, that the corresponding }

{ sResource ID is returned in mySBlk.spID, and that Found }

{ remains > 1 to indicate that it is okay to open the }

{ driver.}

END;
Using Ethernet, Token Ring, and FDDI Drivers 11-9

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

IF found <> 0 THEN

BEGIN

EnetStr := '.ENET';

WITH myPBRec DO

BEGIN

ioCompletion := NIL; {call made synchronously}

ioNamePtr := @EnetStr;

ioPermssn := fsCurPerm;

ioFlags := 0; {reserved for driver use}

ioSlot := mySBlk.spSlot; {slot of Ethernet card to open}

ioID := mySBlk.spID; {sResource ID for slot}

END;

myErr := OpenSlot(@myPBRec, FALSE);

IF myErr = noErr THEN

ENETRefNum := myPBRec.ioRefNum;

END

ELSE

BEGIN

Enet0Str := '.ENET0';

myErr := OpenDriver(Enet0Str, ENETRefNum);

END;

IF myErr <> noErr THEN

DoError(myErr); {handle the error}

Get_And_Open_ENET_Driver := ENETRefNum; {return the refNum or }

{ 0 if unsuccessful}

END;

Using a Write-Data Structure to Transmit Ethernet Data 11

You use the EWrite function to send data to the .ENET driver for transmission over the
Ethernet network. When you do this, you provide a pointer to a write-data structure
containing one or more pairs of length words and pointers. (Figure 11-3 shows multiple
pairs.) Each pair indicates the length and location of a portion of the data packet to be
sent over the network. The first length-pointer pair points to a header block that is at
least 14 bytes long and that starts with the destination node hardware address. Note that
this is not the AppleTalk address, but is the hardware address of the destination node.
(Note that this address can also be a multicast address or the broadcast address for the
link type.)

The next 6 bytes of the header block are reserved for use by the .ENET driver. These
bytes are followed by the 2-byte Ethernet protocol type field (Ethernet Phase 2 packets
use this field to indicate the amount of data in the packet). Data may follow the header
block; all other length-pointer pairs point to data. The write-data structure terminates
with a 0 word.
11-10 Using Ethernet, Token Ring, and FDDI Drivers

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11

E
thernet, Token R

ing, and F
iber D

istributed D
ata Interfac

Note
Instead of using multiple buffers and length-pointer pairs, you can
create a write-data structure that consists of a single buffer that specifies
the header block followed directly by the data. For more information
about write-data structures, see the chapter “Datagram Delivery
Protocol (DDP)” in this book. ◆

When you first open the .ENET driver, it allocates a 768-byte buffer that it uses for
transmitting data packets. This buffer is large enough to hold the largest EtherTalk
packet, which is 621 bytes in size. If you want to transmit data packets larger than 768
bytes, call the ESetGeneral function; the .ENET driver can then allocate a data buffer
large enough to send packets up to 1514 bytes in size. Figure 11-3 shows the write-data
structure that you use to send data to the .ENET driver.

Figure 11-3 An Ethernet write-data structure

The sample code in Listing 11-2 uses a multicast address instead of a local hardware
address. The multicast address is a packet array that is defined as follows:

VAR

gMultiCastAddr: PACKED ARRAY[0..5] OF Byte;

Bytes

6Destination node ID

6Reserved for use by driver

2Protocol type

Variable

length

Data

Variable

length

Data

Header

block

Bytes

4

Length of first entry 2

Pointer to first entry

Length of second entry 2

Pointer to second entry

Length of last entry 2

Pointer to last entry

0 2

4

4

Using Ethernet, Token Ring, and FDDI Drivers 11-11

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

The following procedure initializes the gMultiCastAddr global variable:

PROCEDURE Init_Multicast_Address;

BEGIN

gMultiCastAddr[1] := $09;

gMultiCastAddr[2] := $00;

gMultiCastAddr[3] := $2B;

gMultiCastAddr[4] := $00;

gMultiCastAddr[5] := $00;

gMultiCastAddr[6] := $04;

END;

The code in Listing 11-2 defines an Ethernet write-data structure, and then it calls the
EWrite function to send a data packet over Ethernet.

Listing 11-2 Sending a data packet over Ethernet

FUNCTION Send_Sample_ENET_Packet (ENETRefNum: Integer): OSErr;

CONST

kSIZE1 = 100;

kSIZE2 = 333;

TYPE

WDS = RECORD {write-data structure}

length: Integer; {length of nth entry}

aptr: Ptr; {pointer to nth entry}

END;

VAR

myWDS: ARRAY[1..4] OF WDS;

myPB: EParamBlock; {.ENET parameter block}

wheader: PACKED ARRAY[0..13] OF Byte;

stuff1: ARRAY[1..kSIZE1] OF Byte;

stuff2: ARRAY[1..kSIZE2] OF Byte;

myErr: OSErr;

BEGIN

BlockMove(@gMultiCastAddr, @wheader, 6); {multicast address}

wheader[12] := $90; {protocol type}

wheader[13] := $90; {must match kProtocol value}

myWDS[1].length := 14;

myWDS[1].aptr := @wheader;

myWDS[2].length := kSIZE1;

myWDS[2].aptr := @stuff1;

myWDS[3].length := kSIZE2;
11-12 Using Ethernet, Token Ring, and FDDI Drivers

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11

E
thernet, Token R

ing, and F
iber D

istributed D
ata Interfac

myWDS[3].aptr := @stuff2;

myWDS[4].length := 0;

myPB.ePointer := @myWDS;

myPB.ioRefNum := ENETRefNum;

{Send something.}

myErr := EWrite(@myPB, FALSE);

IF myErr <> noErr THEN

DoError(myErr);

Send_Sample_ENET_Packet := myErr;

END;

Using the Default Ethernet Protocol Handler to Read Data 11

This section describes how to write an application that uses the Apple default protocol
handler for Ethernet Phase 1 packets. For Ethernet Phase 2 packets, the process is largely
the same, except that you must code and provide your own protocol handler and use the
LAP Manager to attach it.

When the Ethernet NuBus card or other Ethernet hardware receives a data packet, it
generates an interrupt to the CPU. The interrupt handler in ROM determines the source
of the interrupt and calls the .ENET driver. The .ENET driver reads the packet header
to determine the protocol type of the data packet and checks to see if any client has
specified that protocol type in a call to the EAttachPH function. If so, the client either
specified a NIL pointer to a protocol handler or provided its own protocol handler. If the
client specified a NIL pointer, the .ENET driver uses its default protocol handler to read
the data. If no one has specified the protocol type that the packet header contains in a
call to the EAttachPH function, the .ENET driver discards the data. (For more informa-
tion about the EAttachPH function, see “EAttachPH” on page 11-28.)

The Ethernet driver looks for a pending ERead function with a protocol type that matches
the packet protocol type. (When you call the ERead function, you pass it a protocol type.)
The Ethernet driver places the entire packet—including the packet header—into the
buffer specified by that function. The function returns the number of bytes actually read.
If the packet is larger than the data buffer, the ERead function places as much of the
packet as will fit into the buffer and returns the buf2SmallErr result code.

You must call the ERead function asynchronously to await the next data packet. When the
.ENET driver receives the data packet, it completes execution of the ERead function and
calls your completion routine. Your completion routine should call the ERead function
again so that an ERead function is always pending execution. If the .ENET driver receives
a data packet with a protocol type for which you specified the default protocol handler
while no ERead function is pending, the .ENET driver discards the packet.

You can have several asynchronous calls to the ERead function pending execution
simultaneously as long as you use different buffers and a different parameter block
for each call.
Using Ethernet, Token Ring, and FDDI Drivers 11-13

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
Alternatively, after the ERead function completes execution, you can call the function
again from your completion routine, and reuse the same parameter block. This is the
approach the code in Listing 11-3 takes.

The code in Listing 11-3 calls the EAttachPH function to specify that the .ENET driver
should use the default protocol handler to process packets for the protocol type defined
by the following constant:

CONST

kMyProtocol = $9090; {must be > $5DC}

In practice, you should call the EAttachPH function very early, during your program
initialization sequence, if possible. As soon as the connection is established and you
are expecting data, you should call the ERead function asynchronously. The code in
Listing 11-3 shows how to attach a protocol handler and read a packet for an Ethernet
Phase 1 packet.

Listing 11-3 Attaching a protocol handler and reading a packet

FUNCTION Sample_AttachPH_And_Read_Packet (ENETRefNum: Integer): OSErr;

CONST

kBigBytes = 8888;

VAR

myPB: MyEParamBlock;

myEPBPtr: MyEParamBlkPtr;

aptr: Ptr;

myErr: OSErr;

BEGIN

myEPBPtr := @myPB; {set up EAttachPH parameters}

WITH myPB.pb DO

BEGIN

eProtType := kMyProtocol; {protocol type}

ePointer := NIL; {use default protocol handler}

ioRefNum := ENETRefNum; {.ENET driver reference number}

END;

myErr := EAttachPH(EParamBlkPtr(myEPBPtr), FALSE);

IF myErr <> noErr THEN {check if error occurred while }

DoError(myErr) { attaching protocol handler}

ELSE

BEGIN

aptr := NewPtr(kBigBytes);

myPB.myA5 := SetCurrentA5; {store the current A5 world}
11-14 Using Ethernet, Token Ring, and FDDI Drivers

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11
E

thernet, Token R
ing, and F

iber D
istributed D

ata Interfac
WITH myPB.pb DO

BEGIN

ioCompletion := @MyCompRoutine;

{ptr to completion routine}

eProtType := kMyProtocol; {protocol type to respond to}

ePointer := aptr; {pointer to read-data buffer}

eBuffSize := kBigBytes; {size of read-data buffer}

ioRefNum := ENETRefNum; {.ENET driver refNum}

END;

myErr := ERead(EParamBlkPtr(myEPBPtr), TRUE);

IF myErr <> noErr THEN

{check if error occurred queueing read request}

BEGIN

DoError(myErr); {process error result}

Detach_SamplePH(ENETRefNum); {detach protocol handler)

END;

END;

Sample_AttachPH_And_Read_Packet := myErr;

 END;

When the .ENET driver receives a packet, it then calls your completion routine if you
called the ERead function asynchronously and the ioCompletion routine field is not
NIL. Your completion routine should process the packet, after which it can then queue
another asynchronous call to the ERead function to await the next packet.

The sample completion routine that Listing 11-4 shows uses the following inline function
that gets the pointer to the parameter block from register A0.

FUNCTION GetParamBlockPtr: Ptr;

INLINE

$2E88; {MOVE.L A0,(SP)}

Because register A0 is a utility register that compilers often use for their own purposes,
the sample code uses the following stub completion routine technique to minimize the
possibility that a compiler will overwrite the value in register A0. The stub completion
routine calls GetParamBlockPtr and then calls the actual completion routine.

PROCEDURE MyStubCompRoutine;

VAR
myEPBPtr: MyEParamBlkPtr;

BEGIN
myEPBPtr := MyEParamBlkPtr(GetParamBlockPtr);

{get parameter block pointer from register A0}
myCompRoutine(myEPBPtr);

{now call the actual completion routine}
END;
Using Ethernet, Token Ring, and FDDI Drivers 11-15

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
Listing 11-4 shows the actual completion routine that the stub completion routine calls.
This completion routine reuses the original parameter block when it calls the ERead
function again. The code also shows how to access global variables from within the
completion routine. Note that if you call the ERead function from within the completion
routine, you must call the function asynchronously. You must not call the ERead
function synchronously at interrupt time.

Listing 11-4 Completion routine to process received packet and await the next packet

PROCEDURE MyCompRoutine (myEPBPtr: MyEParamBlkPtr);

VAR

myErr: OSErr;

saveA5: LongInt;

aptr: Ptr;

BEGIN

saveA5 := SetA5(myEPBPtr^.myA5); {set A5 to our world}

IF (myEPBPtr^.pb.ioResult < noErr) THEN

{was ERead successful?}

BEGIN

IF (myEPBPtr^.pb.ioResult <> reqAborted) THEN

{was request aborted?}

DoError(myEPBPtr^.pb.ioResult)

END

ELSE

BEGIN {process the packet}

aptr := myEPBPtr^.pb.EPointer;

ProcessData(aptr); {use the data}

END;

 IF NOT gDone THEN {check if we have been called}

BEGIN {if not, call ERead again}

myErr := ERead(EParamBlkPtr(myEPBPtr), TRUE);

IF myErr <> noErr THEN

DoError(myErr); {check if error occurred while }

{ queueing call to ERead}

END;

saveA5 := SetA5(saveA5); {restore the A5 world}

END; {of MyCompletion routine}
11-16 Using Ethernet, Token Ring, and FDDI Drivers

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11
E

thernet, Token R
ing, and F

iber D
istributed D

ata Interfac
Using Your Own Ethernet Protocol Handler to Read Data 11

If a client of the .ENET driver has used the EAttachPH function to provide a pointer to
its own protocol handler, the .ENET driver calls that protocol handler, which must in
turn call the .ENET driver’s ReadPacket and ReadRest routines to read the data. Your
protocol handler calls these routines in essentially the same way as you called these
routines to implement a DDP socket listener. (The chapter “Datagram Delivery Protocol
[DDP]” describes how you use these routines to implement a DDP socket listener.)

The following sections describe how the .ENET driver calls a custom protocol handler
and the ReadPacket and ReadRest routines.

Note
Because an Ethernet protocol handler must read from and write to
the CPU’s registers, you must write the protocol handler in assembly
language; you cannot write a protocol handler in Pascal. ◆

How the .ENET Driver Calls Your Protocol Handler 11

You can provide an Ethernet protocol handler for a particular protocol type and use the
EAttachPH function to attach it to the .ENET driver. When the driver receives an
Ethernet packet, it reads the packet header into an internal buffer, reads the protocol
type, and calls the protocol handler for that protocol type. The CPU is in interrupt mode,
and the registers are used as follows:

If your protocol handler processes more than one protocol type, you can read the
protocol type field in the frame header to determine the protocol type of the packet.
The protocol-type field starts 2 bytes before the address pointed to by the A3 register.

Registers on call to Ethernet protocol handler

A0 Reserved for internal use by the .ENET driver (You must preserve this register
until after the ReadRest routine has completed execution.)

A1 Reserved for internal use by the .ENET driver (You must preserve this register
until after the ReadRest routine has completed execution.)

A2 Free for your use

A3 Pointer to first byte past data-link header bytes (the first byte after the 2-byte
protocol-type field)

A4 Pointer to the ReadPacket routine (The ReadRest routine starts 2 bytes
after the start of the ReadPacket routine.)

A5 Free for your use until after the ReadRest routine has completed execution

D0 Free for your use

D1 Number of bytes in the Ethernet packet left to be read (that is, the number of
bytes following the Ethernet header)

D2 Free for your use

D3 Free for your use
Using Ethernet, Token Ring, and FDDI Drivers 11-17

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
Note
The source address starts 8 bytes before the address pointed to by
the A3 register, and the destination address starts 14 bytes before
the address pointed to by the A3 register. ◆

After you have called the ReadRest routine, you can use registers A0 through A3 and
D0 through D3 for your own use, but you must preserve all other registers. You cannot
depend on having access to your application global variables.

How Your Protocol Handler Calls the .ENET Driver Routines 11

Your protocol handler must call the .ENET driver routines ReadPacket and ReadRest
to read the incoming data packet.

Note
Before the Ethernet driver calls your protocol handler at interrupt time,
you must have already allocated memory for one or more data buffers
to hold the incoming data. ◆

You may call the ReadPacket routine as many times as you like to read the data piece
by piece into one or more data buffers, but you must always use the ReadRest routine
to read the final piece of the data packet. The ReadRest routine restores the machine
state (the stack pointers, status register, and so forth) and checks for error conditions.

Before you call the ReadPacket routine, you must place a pointer to the data buffer in
the A3 register. You place the number of bytes you want to read in the D3 register. You
must not request more bytes than remain in the data packet.

To call the ReadPacket routine, execute a JSR instruction to the address in the A4
register. The ReadPacket routine uses the registers as follows:

Registers on entry to the ReadPacket routine

A3 Pointer to a buffer to hold the data you want to read

D3 Number of bytes to read; must be nonzero

Registers on exit from the ReadPacket routine

A0 Unchanged

A1 Unchanged

A2 Unchanged

A3 First byte after the last byte read into buffer

D0 Changed

D1 Number of bytes left to be read

D2 Unchanged

D3 Equals 0 if requested number of bytes were read, nonzero if error
11-18 Using Ethernet, Token Ring, and FDDI Drivers

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11
E

thernet, Token R
ing, and F

iber D
istributed D

ata Interfac
The ReadPacket routine indicates an error by clearing to 0 the zero (z) flag in the status
register. If the ReadPacket routine returns an error, you must terminate execution of
your protocol handler with an RTS instruction without calling ReadPacket again or
calling ReadRest at all.

Call the ReadRest routine to read the last portion of the data packet, or call it after you
have read all the data with ReadPacket routines and before you do any other
processing or terminate execution. You must provide in the A3 register a pointer to a
data buffer and must indicate in the D3 register the size of the data buffer. If you have
already read all of the data with calls to the ReadPacket routine, you can specify a
buffer of size 0.

▲ W A R N I N G

If you do not call the ReadRest routine after your last call to the
ReadPacket routine, the system will crash. ▲

To call the ReadRest routine, execute a JSR instruction to an address 2 bytes past the
address in the A4 register. The ReadRest routine uses the registers as follows:

The ReadRest routine indicates an error by clearing to 0 the zero (z) flag in the status
register. You must terminate execution of your protocol handler with an RTS instruction
whether or not the ReadRest routine returns an error.

Changing the Ethernet Hardware Address 11

Each Ethernet NuBus card or other Ethernet hardware interface device contains a unique
6-byte hardware address assigned by the manufacturer of the device. The .ENET driver
normally uses this address to determine whether to receive a packet. To change the
hardware address for your node, place in the System file a resource of type 'eadr' with
a resource ID equal to the slot number of the Ethernet NuBus card.

Registers on entry to the ReadRest routine

A3 Pointer to a buffer to hold the data you want to read

D3 Size of the buffer (word length); may be 0

Registers on exit from the ReadRest routine

A0 Unchanged

A1 Unchanged

A2 Unchanged

A3 Pointer to first byte after the last byte read into buffer

D0 Changed

D1 Changed

D2 Unchanged

D3 Equals 0 if requested number of bytes were read; less than 0 if more data was
left than would fit in buffer (extra data equals –D3 bytes); greater than 0 if less
data was left than the size of the buffer (extra buffer space equals D3 bytes)
Using Ethernet, Token Ring, and FDDI Drivers 11-19

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
The 'eadr' resource consists only of a 6-byte number. Do not use the broadcast address
or a multicast address for this number. (Refer to Inside AppleTalk, second edition, for the
broadcast and multicast address formats.)

When you open the .ENET driver, it looks for an 'eadr' resource with the resource ID
that matches the slot number of the card. If it finds one, the driver substitutes the
number in this resource for the Ethernet hardware address and uses it until the driver is
closed or reset.

Note
To avoid address collisions, you should never arbitrarily change the
Ethernet hardware address. This feature should be used only by a
system administrator who can keep track of all the Ethernet addresses
in the system. ◆

Using the Token Ring Driver 11
You can write an application implementing a protocol other than AppleTalk that reads
data from and writes it to the token ring driver defined by Apple.

To write data to the token ring driver and to perform other functions such as adding a
functional address for the token ring hardware, you use the Ethernet functions described
earlier, with the modifications noted later in this section. To read 802.2 packets from the
token ring driver, you need to attach your protocol handler to the LAP Manager.

The Apple token ring driver implementation supports only the IEEE 802.2 Type 1
protocol and allows for the attachment of only one protocol handler that reads
802.2 packets that contain an SAP value of $AA.

Although it is possible to attach your own protocol handler at the hardware device
driver level, Apple recommends that you not do this because it excludes AppleTalk from
using the token ring driver. So that more than one protocol can receive packets from the
token ring driver concurrently, Apple recommends that you attach your protocol handler
to the LAP Manager. The LAP Manager attaches its own protocol handler to the token
ring driver, and when it receives a packet for your protocol, the LAP Manager calls your
protocol handler. When it receives a packet for another protocol, such as AppleTalk, the
LAP Manager calls that application’s protocol handler.

For a description of how to attach and detach your protocol handler for token ring, see
the chapter “Link-Access Protocol (LAP) Manager” included in this book and the
discussion of token ring and FDDI in “About Ethernet, Token Ring, and FDDI Support”
beginning on page 11-3 in this chapter. The chapter “Link-Access Protocol (LAP)
Manager” also gives more information on the SAP field value for 802.2 Type 1 packets.

Applying Ethernet Functions 11

The Apple token ring driver implements many but not all of the functions that the Apple
Ethernet driver implements.

For those Ethernet functions that do apply to token ring, you use the function for token
ring in the same way that you do for Ethernet: you pass parameters in a parameter block
11-20 Using Ethernet, Token Ring, and FDDI Drivers

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11
E

thernet, Token R
ing, and F

iber D
istributed D

ata Interfac
and you use the Ethernet control code in the csCode field to call the function. The only
difference is that instead of specifying the Ethernet driver reference number in the
parameter block’s ioRefNum field, you specify the token ring driver reference number.
Here are the Ethernet functions that apply to token ring:

■ You use the EAddMulti function to add a functional address for token ring and the
EDelMulti function to remove one. Be careful not to specify the broadcast address
as a functional address. See Inside AppleTalk, second edition, for a description and the
format of functional and broadcast addresses for token ring.

■ You use the EWrite function to send data to the token ring driver for transmission
over the network.

Here are the Ethernet functions that do not apply to token ring:

■ The ERead and ERdCancel functions are not valid for token ring because Apple does
not specify a default protocol handler for the token ring driver. These two functions
are used exclusively by applications that use the default Ethernet protocol handler. If
an application calls these functions for token ring, the driver will return an error.

■ The ESetGeneral function switches to a mode that allows the .ENET driver to
transmit a larger Ethernet data packet than the standard size. Because token ring is
not normally restricted to the limited packet size, this function does not apply.
However, the token ring driver will return a result of noErr if you call this function.

There are some other differences between Ethernet and token ring:

■ The token ring packet size is determined by the token ring hardware developer.
However, for Logical Link Control (LLC) type packets, the packet length cannot
exceed 1500 bytes.

■ The token ring interface uses functional addresses instead of multicast addresses. Be
careful not to use the broadcast address for a functional address. For information
about both kinds of token ring addresses, see Inside AppleTalk, second edition.

■ For token ring, the vendor who supplies the hardware device driver provides a
control panel that allows you to specify an alternative hardware address. (For general
information about alternative hardware addresses, see “Changing the Ethernet
Hardware Address” on page 11-19.)

Note
Although you can use the EAttachPH function to attach a protocol
handler to the token ring driver and the EDetachPH function to
remove one, Apple recommends that you not use these functions.
Instead, you should use the LAP Manager’s L802Attach and
L802Detach routines. ◆

Sending and Receiving Data 11

The tasks involved in sending data to and receiving it from a token ring driver are
similar to those that you use for Ethernet. The primary difference is that you use the LAP
Manager to attach your protocol handler. Any vendor implementing a token ring driver
to run on a Macintosh computer must follow rules that direct them to return packet
information in the same manner as does the Ethernet driver for 802.2 packets. From the
Using Ethernet, Token Ring, and FDDI Drivers 11-21

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
perspective of an application that uses the token ring driver, this means that when the
LAP Manager calls your protocol handler, you can expect the token ring hardware
addresses that you reference from register A3 to follow the same format that is used for
Ethernet addresses, regardless of how the token ring address might appear at the
hardware level.

Here are the steps that you follow to send data to and receive it from a token ring driver:

1. Locate the token ring cards that are installed in the system. Use the Slot Manager to
identify installed token ring cards. Use the SGetTypeSRsrc function described in the
Slot Manager chapter of Inside Macintosh: Devices to determine which NuBus slots
contain token ring cards. To find token ring cards, use the value catNetwork (0x4)
in the spCategory field and the value typeTokenRing (0x2) in the spCType field.
You should provide a user interface that allows the user to select a specific token ring
card in the case that more than one is present.

2. Use the OpenSlot function to open the token ring driver. Set the ioNamePtr field to
.TOKN. If you did not locate any NuBus token ring cards in step 1, you should also
attempt to open the .TOKN0 driver in case non-NuBus token ring hardware is
attached to the system. Use the Device Manager’s OpenDriver function to open the
.TOKN0 driver. (For information on the OpenSlot and OpenDriver functions, see
the chapter “Device Manager” in Inside Macintosh: Devices.)
Note that this section refers to the .TOKN driver shell, which facilitates multi-
vendor support, as the .TOKN driver. Opening the .TOKN driver shell, which
loads and opens the card’s driver, is effectively the same as directly opening the
token ring driver.

3. If your application requires a functional address, use the EAddMulti function to
register one. Functional addresses are the token ring equivalent of Ethernet and FDDI
multicast addresses. (For information on functional addresses, see Inside AppleTalk,
second edition. For a description of multicast addresses, see “About Multicast
Addressing” on page 11-7.)

4. Use the LAP Manager’s L802Attach routine to install your protocol handler. (See
the chapter “Link-Access Protocol [LAP] Manager” in this book for more information.)

5. Use the EWrite function to send packets to the token ring driver for transmission
across the network. To use the EWrite function, you provide a pointer to a write-data
structure. The first buffer in the write-data structure must be at least 14 bytes long: the
first 6 bytes of that buffer must contain the destination address. Bytes 13 and 14 must
contain the packet length, which must not exceed 1500 bytes. The token ring driver
fills in bytes 7–12 with the source address. (For more information on the write-data
structure, see “Using a Write-Data Structure to Transmit Ethernet Data” on
page 11-10.)

6. When you are finished using the token ring driver, use the LAP Manager’s
L802Detach routine to remove your protocol handler.

7. When you are finished using a functional address, use the EDelMulti function to
remove it.
11-22 Using Ethernet, Token Ring, and FDDI Drivers

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11
E

thernet, Token R
ing, and F

iber D
istributed D

ata Interfac
Using the FDDI Driver 11
You can write an application implementing a protocol other than AppleTalk that processes
802.2 packets and that sends and receives data over a Fiber Distributed Data Interface
(FDDI) network. To do this, you read data from and write it to the FDDI driver defined by
Apple. Your application can run on a node that is also running AppleTalk.

To write data to the FDDI driver and to perform other functions such as adding a
multicast address for the FDDI hardware, you use the Ethernet functions described
earlier in this chapter. To receive 802.2 packets from the FDDI driver, you attach your
protocol handler to the LAP Manager using the interface to the LAP Manager.

The Apple FDDI driver implementation support allows for the attachment of only one
protocol handler. The Apple FDDI driver specification requires that an FDDI driver
handle 802.2 packets to service access points (SAP) other than SAP $AA.

Although it is possible to attach your own protocol handler at the hardware device
driver level, Apple Computer, Inc. recommends that you not do this because it excludes
AppleTalk from using the FDDI driver. So that more than one protocol can receive
packets from the FDDI driver concurrently, Apple recommends that you attach your
protocol handler to the LAP Manager. The LAP Manager attaches its own protocol
handler to the FDDI driver, and when it receives a packet for your protocol, the LAP
Manager calls your protocol handler. When it receives a packet for another protocol,
such as AppleTalk, the LAP Manager calls that application’s protocol handler.

For a description of how to attach and detach your protocol handler for FDDI, see the
chapter “Link-Access Protocol (LAP) Manager” included in this book and the discussion
of token ring and FDDI in “About Ethernet, Token Ring, and FDDI Support” beginning
on page 11-3 in this chapter. The chapter “Link-Access Protocol (LAP) Manager” also
explains the concept and use of the SAP field value for 802.2 Type 1 packets.

Applying Ethernet Functions 11

The Apple FDDI driver implements many but not all of the functions that the Apple
Ethernet driver implements.

For those Ethernet functions that do apply to FDDI, you use the function for FDDI in the
same way that you do for Ethernet: you pass parameters in a parameter block and you
use the Ethernet control code in the csCode field to call the function. The only difference
is that instead of specifying the Ethernet driver reference number in the parameter
block’s ioRefNum field, you specify the FDDI driver reference number. Here are the
Ethernet functions that apply to FDDI:

■ You use the EAddMulti function to add a multicast address for FDDI and the
EDelMulti function to remove one. Be careful not to use the broadcast address as
a multicast address. The broadcast and multicast addresses are the same for FDDI
and Ethernet. For information about these addresses and their formats, see the
discussion of them for Ethernet in Inside AppleTalk, second edition.

■ You use the EWrite function to send data to the FDDI driver for transmission over
the network.
Using Ethernet, Token Ring, and FDDI Drivers 11-23

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
Here are the Ethernet functions that do not apply to FDDI:

■ The ERead and ERdCancel functions are not valid for FDDI because Apple does not
specify a default protocol handler for the FDDI driver. These two functions are used
exclusively by applications that use the default Ethernet protocol handler. If an
application calls these functions for FDDI, the driver will return an error.

■ The ESetGeneral function switches to a mode that allows the .ENET driver to
transmit a larger Ethernet data packet than the standard size. Because FDDI is not
normally restricted to the limited packet size, this function does not apply. However,
the FDDI driver will return a result of noErr if you call this function.

There are some other differences between Ethernet and FDDI:

■ The FDDI packet size is determined by the FDDI hardware developer. However, for
Logical Link Control (LLC) type packets, the packet length cannot exceed 1500 bytes.

■ The FDDI driver searches for a resource of type 'fadr' instead of 'eadr' in the
System file for an alternative hardware address. (For general information about
alternative hardware addresses, see “Changing the Ethernet Hardware Address” on
page 11-19.)

Note
Although you can use the EAttachPH function to attach a protocol
handler to the FDDI driver and the EDetachPH function to remove
one, Apple recommends that you not use these functions. Instead,
you should use the LAP Manager’s L802Attach and L802Detach
routines. ◆

Sending and Receiving Data 11

The tasks involved in sending data to and receiving it from an FDDI driver are similar to
those that you use for Ethernet. The primary difference is that you use the LAP Manager
to attach your protocol handler. Any vendor implementing an FDDI driver to run on a
Macintosh computer must follow rules that direct them to return packet information in
the same manner as does the Ethernet driver for 802.2 packets. From the perspective of
an application that uses the FDDI driver, this means that when the LAP Manager calls
your protocol handler, you can expect the FDDI hardware addresses that you reference
from register A3 to follow the same format that is used for Ethernet addresses, regardless
of how the FDDI address might appear in the packet. The chapter “Link-Access Protocol
(LAP) Manager” in this book explains this in detail.

Here are the steps that you follow to send data to and receive it from an FDDI driver:

1. Locate the FDDI cards that are installed in the system. Use the Slot Manager to identify
installed FDDI cards. Use the SGetTypeSRsrc function described in the Slot Manager
chapter of Inside Macintosh: Devices to determine which NuBus slots contain FDDI
cards. To find FDDI cards, use the value catNetwork (0x4) in the spCategory field
and the value typeFDDI (0x11) in the spCType field. You should provide a user
interface that allows the user to select a specific FDDI card in the case that more than
one is present.

2. Use the OpenSlot function to open the FDDI driver. Set the ioNamePtr field to
.FDDI. If you did not locate any NuBus FDDI cards in step 1, you should also attempt
to open the .FDDI0 driver in case non-NuBus FDDI hardware is attached to the
11-24 Using Ethernet, Token Ring, and FDDI Drivers

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11
E

thernet, Token R
ing, and F

iber D
istributed D

ata Interfac
system. Use the Device Manager’s OpenDriver function to open the .FDDI0 driver.
(For information on the OpenSlot and OpenDriver functions, see the chapter
“Device Manager” in Inside Macintosh: Devices.)
Note that this section refers to the .FDDI driver shell, which facilitates multivendor
support, as the .FDDI driver. Opening the .FDDI driver shell, which loads and opens
the card’s driver, is effectively the same as directly opening the FDDI driver.

3. If your application requires a multicast address, use the EAddMulti function to
register a multicast address. (For information on multicast addresses, see Inside
AppleTalk, second edition. For a description of multicast addresses, see “About
Multicast Addressing” on page 11-7.)

4. Use the LAP Manager’s L802Attach routine to install your protocol handler. (See
the chapter “Link-Access Protocol [LAP] Manager” in this book for more information.)

5. Use the EWrite function to send packets to the FDDI driver for transmission across
the network. To use the EWrite function, you provide a pointer to a write-data
structure. The first buffer in the write-data structure must be at least 14 bytes long: the
first 6 bytes of that buffer must contain the destination address. Bytes 13 and 14 must
contain the packet length, which must not exceed 1500 bytes. The FDDI driver fills in
bytes 7–12 with the source address. (For more information on the write-data structure,
see “Using a Write-Data Structure to Transmit Ethernet Data” on page 11-10.)

6. When you are finished using the FDDI driver, use the LAP Manager’s L802Detach
routine to remove your protocol handler.

7. When you are finished using a multicast address, use the EDelMulti function to
remove it.

Ethernet, Token Ring, and FDDI Reference 11

This section describes the Ethernet data structures and functions. You use these data
structures and functions to communicate directly with the Ethernet, token ring, and
FDDI drivers. The functions were originally designed to read data from and write it
to the Ethernet driver. However, by specifying the appropriate driver reference number,
you can also use many of these functions for the token ring and FDDI drivers.

Some of the Ethernet functions do not apply to token ring and FDDI. Each of the
functions includes a section called Token Ring and FDDI Considerations that identifies
whether the function is valid for these drivers.

The “Data Structures” section shows the Pascal data structures for the write-data
structure and the ENET parameter block of type EParamBlock.

The “Routines” section describes how to

■ attach and detach a protocol handler to receive data from an Ethernet driver

■ write data to the Ethernet, token ring, or FDDI driver

■ read data from the Ethernet driver and cancel a function request to read data from the
driver when you use the default Ethernet protocol handler
Ethernet, Token Ring, and FDDI Reference 11-25

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
■ obtain information about the Ethernet driver and switch its mode to handle
larger packets

■ add and remove a multicast address for an application that uses the Ethernet or FDDI
driver and a functional address for an application that uses the token ring driver

Data Structures 11
This section describes the data structures that you use to provide information to the
Ethernet, token ring, and FDDI drivers. You use the write-data structure to provide the
addressing information and data to send to another node over the network. You use the
ENET parameter block of type EParamBlock to pass information to and receive it from
the functions for Ethernet, token ring, and FDDI drivers.

The Write-Data Structure 11

To send data directly from the Ethernet, token ring, or FDDI driver, you must provide a
write-data structure and pass the EWrite function a pointer to it. A write-data structure
contains a series of pairs of length words and pointers. Each pair indicates the length
and location of a portion of the data that constitutes the packet to be sent over the
network. The interface files for the driver do not include a type declaration for the
write-data structure. Here is an example type declaration that you can include in your
application.

TYPE WDSElement =

RECORD

entryLength: Integer;

entryPtr: Ptr;

END;

Field descriptions

entryLength The length of the data pointer to by entryPtr.
entryPtr A pointer to the data that is part of the packet to be sent using the

EWrite function.

For more information about the write-data structure, see “Using a Write-Data Structure
to Transmit Ethernet Data” beginning on page 11-10.

The Parameter Block for Ethernet, Token Ring, and FDDI Driver Functions 11

All of the driver functions—EAttachPH, EDetachPH, EWrite, ERead, ERdCancel,
EGetInfo, ESetGeneral, EAddMulti, EDelMulti—require a pointer to an ENET
parameter block of type EParamBlock.
11-26 Ethernet, Token Ring, and FDDI Reference

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11
E

thernet, Token R
ing, and F

iber D
istributed D

ata Interfac
This section defines the fields that are common to all of the driver functions that use the
ENET parameter block. The ENET parameter block contains reserved fields that are used
internally by the .ENET driver; these fields are not described. The fields that are used
for specific functions only are defined in the descriptions of the functions to which
they apply.

TYPE EParamBlock =

PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {reserved}

ioVRefNum: Integer; {reserved}

ioRefNum: Integer; {driver reference number}

csCode: Integer; {primary command code}

CASE Integer OF

ENetWrite, ENetAttachPH, ENetDetachPH, ENetRead,

ENetRdCancel,ENetGetInfo,ENetSetGeneral:

(eProtType: Integer; {Ethernet protocol type}

 ePointer: Ptr; {pointer; use depends on function}

 eBuffSize: Integer; {buffer size}

eDataSize: Integer); {number of bytes read}

ENetAddMulti,ENetDelMulti:

(eMultiAddr: ARRAY[0..5] OF Char;) {multicast address}

END;

Field descriptions

ioCompletion A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the system calls your completion
routine when it completes execution of the function. Specify NIL for
this field if you do not wish to provide a completion routine.

ioResult The result of the function. If you call the function asynchronously,
the function sets this field to 1 as soon as it begins execution,
and it changes the field to the actual result code when it
completes execution.

ioRefNum The driver reference number that the OpenDriver function or the
OpenSlot function returns.

csCode A routine selector for the function to be executed. Each function has
a unique routine selector. The MPW interface automatically sets this
value for you.
Ethernet, Token Ring, and FDDI Reference 11-27

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
Routines 11
An application that uses AppleTalk Manager routines for network communication can
communicate with whatever AppleTalk network the user has selected through the
Network control panel. However, you can choose to write an application that talks only
to the hardware device driver for a particular type of network, such as Ethernet; in this
case, your application has to address the hardware driver directly. This section describes
the functions that you use to

■ attach a protocol handler to the .ENET driver

■ detach a protocol handler that you previously attached

■ send data directly to a hardware device driver

■ read data from the .ENET driver

■ cancel a pending call to read data from the .ENET driver

■ obtain information about the .ENET driver

■ switch the .ENET driver mode

■ add a multicast or functional address

■ remove a multicast or functional address

Attaching and Detaching an Ethernet Protocol Handler 11

You can use the functions that this section describes to attach a protocol handler to the
.ENET driver, to specify which protocol handler the .ENET driver is to use for each
protocol type, and to detach a protocol handler that you previously attached.

Note
Apple Computer, Inc. recommends that you attach a
protocol handler for a token ring or an FDDI driver
using the interface to the LAP Manager. ◆

EAttachPH 11

The EAttachPH function attaches a protocol handler to the .ENET driver to receive
packets of a particular protocol type. You can provide and attach your own protocol
handler or use the default protocol handler provided by Apple.

FUNCTION EAttachPH (thePBptr: EParamBlkPtr;

async: Boolean): OSErr;

thePBptr A pointer to a parameter block of type EParamBlock.

async A Boolean value that specifies whether the function is to be
executed asynchronously or synchronously. Specify TRUE for
asynchronous execution.
11-28 Ethernet, Token Ring, and FDDI Reference

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11
E

thernet, Token R
ing, and F

iber D
istributed D

ata Interfac
Parameter block

Field descriptions

eProtType The protocol type for which you are attaching a protocol handler. To
attach a protocol handler for Ethernet Phase 1 packets, specify 0 as
the value of this field. (Ethernet Phase 1 packets are IEEE 802.3
protocol packets.)

ePointer A pointer to your protocol handler application. To use the default
protocol handler that Apple provides, set this field value to NIL.

DESCRIPTION

The EAttachPH function serves two purposes: you can use it to attach to the .ENET
driver your own protocol handler for a specific protocol type, or you can use it to specify
that the .ENET driver should call the default protocol handler for your protocol type. If
you attach your own protocol handler, the .ENET driver calls that protocol handler each
time it receives a packet with the protocol type you specified. If you specify that the
.ENET driver should use the default protocol handler, then you use the ERead command
to read packets with that protocol type. In practice, you should call the EAttachPH
function very early, during your program initialization sequence, if possible.

You specify the protocol type in the eProtType parameter and provide a pointer to the
protocol handler in the ePointer parameter. If you specify NIL for the ePointer
parameter, then the .ENET driver uses the default protocol handler for that protocol type.

SPECIAL CONSIDERATIONS

Instead of using the EAttachPH function to install a protocol handler for an Ethernet
Phase 2 packet, you should use the LAP Manager’s L802Attach routine. In the case of
an 802.3 protocol packet, the .ENET driver passes the packet to the LAP Manager 802.2
protocol handler. If the packet has the protocol type you specified with the L802Attach
routine, the LAP Manager passes the packet on to your protocol handler. For information
about the L802Attach routine, see the chapter “Link-Access Protocol (LAP) Manager”
in this book.

TOKEN RING AND FDDI CONSIDERATIONS

This function is available for token ring and FDDI also. However, Apple Computer, Inc.
recommends that you use the LAP Manager’s L802Attach routine instead to attach
your protocol handlers for token ring and FDDI. For information about the L802Attach
routine, see the chapter “Link-Access Protocol (LAP) Manager” in this book.

→ ioCompletion ProcPtr A pointer to completion routine.
← ioResult OSErr The result code.
→ ioRefNum Integer The driver reference number.
→ csCode Integer Always ENetAttachPH for this function.
→ eProtType Integer The Ethernet protocol type.
→ ePointer Ptr A pointer to protocol handler.
Ethernet, Token Ring, and FDDI Reference 11-29

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
Note that if you use this function for token ring or FDDI, you exclude other processes,
such as AppleTalk, from attaching their protocol handlers to the driver at the same time.
If you use the LAP Manager interface, other applications can also attach their protocol
handlers and use the driver concurrently.

If you use this function for token ring, you can only install a protocol handler for protocol
type 0. To use this function for either token ring or FDDI, you must set the ioRefNum field
to the driver reference number that the OpenSlot or the OpenDriver function returns.

Apple does not provide a default protocol handler for token ring or FDDI.

ASSEMBLY-LANGUAGE INFORMATION

To execute the EAttachPH function from assembly language, call the _Control trap
macro with a value of ENetAttachPH in the csCode field of the parameter block.
To execute the _Control trap asynchronously, include the value ,ASYNC in the
operand field.

RESULT CODES

SEE ALSO

For more information on how to use the EAttachPH function, see “Using the Default
Ethernet Protocol Handler to Read Data” beginning on page 11-13.

For information on the IEEE 802.2 and 802.3 protocols, see the chapter “Link-Access
Protocol (LAP) Manager” in this book.

EDetachPH 11

The EDetachPH function detaches a protocol handler from the .ENET driver.

FUNCTION EDetachPH (thePBptr: EParamBlkPtr;

async: Boolean): OSErr;

thePBptr A pointer to a parameter block of type EParamBlock.

async A Boolean value that specifies whether the function should be
executed asynchronously or synchronously. Specify TRUE for
asynchronous execution.

noErr 0 No error
LAPProtErr –94 Protocol handler is already attached or node’s protocol

table is full
11-30 Ethernet, Token Ring, and FDDI Reference

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11
E

thernet, Token R
ing, and F

iber D
istributed D

ata Interfac
Parameter block

Field descriptions

eProtType The protocol type whose protocol handler you want to remove.

DESCRIPTION

You use the EDetachPH function to remove from the .ENET driver a protocol handler
that you attached using the EAttachPH function. When you call the EDetachPH
function to remove the protocol handler, EDetachPH removes the protocol type from the
node’s protocol table. Once the protocol type is removed from the node’s table, the
.ENET driver no longer delivers packets with that protocol type. You specify the protocol
type in the eProtType parameter.

If you specified your protocol type and attached the default protocol handler,
EDetachPH removes the entry from the node’s protocol table. When you call
the EDetachPH function, any pending calls to the ERead function terminate with
the reqAborted result code.

TOKEN RING AND FDDI CONSIDERATIONS

This function is available for token ring and FDDI also. However, Apple Computer, Inc.
recommends that you use the LAP Manager interface to attach and detach a protocol
handler for token ring and FDDI. To detach a protocol handler, you use the LAP
Manager’s L802Detach routine. For information about the L802Detach routine, see
the chapter “Link-Access Protocol (LAP) Manager” in this book.

Note that if you use this function for token ring or FDDI, you must set the ioRefNum
field to the driver reference number that the OpenSlot or OpenDriver function
returns. For token ring, you can only detach a protocol handler for protocol type 0.

ASSEMBLY-LANGUAGE INFORMATION

To execute the EDetachPH function from assembly language, call the _Control trap
macro with a value of ENetDetachPH in the csCode field of the parameter block.
To execute the _Control trap asynchronously, include the value ,ASYNC in the
operand field.

RESULT CODES

→ ioCompletion ProcPtr A pointer to completion routine.
← ioResult OSErr The result code.
→ ioRefNum Integer The driver reference number.
→ csCode Integer Always ENetDetachPH for this function.
→ eProtType Integer The Ethernet protocol typ.

noErr 0 No error
LAPProtErr –94 No protocol handler is attached
Ethernet, Token Ring, and FDDI Reference 11-31

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
Writing and Reading Ethernet Packets 11

You can use the functions in this section to send data to an Ethernet, token ring, or FDDI
driver to be transmitted over the network. When you use the default Ethernet protocol
handler, you can use the ERead and ERdCancel functions to read Ethernet packets and
cancel execution of a read operation.

EWrite 11

The EWrite function allows you to send data directly to a hardware device driver for a
particular network type for transmission across the network.

FUNCTION EWrite (thePBptr: EParamBlkPtr; async: Boolean): OSErr;

thePBptr A pointer to a parameter block of type EParamBlock.

async A Boolean value that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions

ePointer A pointer to the write-data structure that contains the data that you
want to send.

DESCRIPTION

You use the EWrite function to send a data packet over an Ethernet, a token ring, or an
FDDI network by communicating directly with the hardware device driver for that
network type. You must first prepare a write-data structure that specifies the destination
address and the protocol type and contains the data that you want to send. You place a
pointer to the write-data structure in the ePointer parameter.

For Ethernet, if you want to send a packet larger than 768 bytes, you must first call
the ESetGeneral function to put the .ENET driver in general-transmission mode.
If the size of the packet you provide is less than 60 bytes, the driver adds pad bytes to
the packet.

→ ioCompletion ProcPtr A pointer to completion routine.
← ioResult OSErr The result code.
→ ioRefNum Integer The driver reference number.
→ csCode Integer Always ENetWrite for this function.
→ ePointer Ptr A pointer to write-data structure.
11-32 Ethernet, Token Ring, and FDDI Reference

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11
E

thernet, Token R
ing, and F

iber D
istributed D

ata Interfac
TOKEN RING AND FDDI CONSIDERATIONS

You can use this function to send data to a token ring or FDDI driver. Note that the
packet size for token ring and FDDI is hardware dependent. However, for Logical Link
Control (LLC) type packets, the packet length cannot exceed 1500 bytes.

To use this function for token ring or FDDI, you must set the ioRefNum field to the
driver reference number that the OpenSlot or OpenDriver function returns.

You must also provide a pointer to a write-data structure. The first buffer in the write-
data structure must be at least 14 bytes long: the first 6 bytes of that buffer must contain
the destination address. Bytes 13 and 14 must contain the packet length, which must not
exceed 1500 bytes. The token ring driver fills in bytes 7–12 with the source address.

ASSEMBLY-LANGUAGE INFORMATION

To execute the EWrite function from assembly language, call the _Control trap macro
with a value of ENetWrite in the csCode field of the parameter block. To execute the
_Control trap asynchronously, include the value ,ASYNC in the operand field.

RESULT CODES

SEE ALSO
For information on how to use the EWrite function and how to create a write-data
structure, see “Using a Write-Data Structure to Transmit Ethernet Data” beginning on
page 11-10.

ERead 11

When you use the default protocol handler for Ethernet that Apple provides, you must
use the ERead function to read a data packet and place it in a data buffer.

FUNCTION ERead (thePBptr: EParamBlkPtr; async: Boolean): OSErr;

thePBptr A pointer to a parameter block of type EParamBlock.

async A Boolean value that specifies whether the function should be
executed asynchronously or synchronously. Specify TRUE for
asynchronous execution.

noErr 0 No error
eLenErr –92 Packet too large or first entry of the write-data structure

did not contain the full 14-byte header
excessCollsns –95 Hardware error
Ethernet, Token Ring, and FDDI Reference 11-33

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
Parameter block

Field descriptions

eProtType The protocol type of the packet you want to read.
ePointer A pointer to the data buffer into which you want to read data.
eBuffSize The size of the data buffer. If you are expecting Ethernet data

packets, the buffer should be at least 621 bytes in size; if you are
expecting general Ethernet data packets, the buffer should be at
least 1514 bytes in size.

eDataSize The number of bytes of data actually read.

DESCRIPTION

You can use the ERead function to read packets of a particular protocol type only after
you have used the EAttachPH function to specify a NIL pointer to the protocol handler
to indicate that you want to use the default protocol handler. In practice, you should call
the EAttachPH function very early, during your program initialization sequence, if
possible. As soon as the connection is established and you are expecting data, you
should call the ERead function asynchronously.

The ERead function places the entire packet, including the packet header, into your
buffer. The function returns in the eDataSize parameter the number of bytes actually
read. If the packet is larger than the data buffer, the ERead function places as much of
the packet as will fit into the buffer and returns the buf2SmallErr result code.

Call the ERead function asynchronously to await the next data packet. When the .ENET
driver receives the data packet, it completes execution of the ERead function and calls
your completion routine. If the .ENET driver receives a data packet with a protocol type
for which you specified the default protocol handler while no ERead command is
pending, the driver discards the data packet.

You can have several asynchronous calls to the ERead function pending execution
simultaneously as long as you use a different parameter block for each call.

SPECIAL CONSIDERATIONS

You must not use the ERead function to read packets if you supply and attach your own
protocol handler. In this case, you use the driver’s ReadPacket and ReadRest routines
from within your protocol handler.

→ ioCompletion ProcPtr A pointer to completion routine.
← ioResult OSErr The result code.
→ ioRefNum Integer The driver reference number.
→ csCode Integer Always ENetRead for this function.
→ eProtType Integer The Ethernet protocol type.
→ ePointer Ptr A pointer to a data buffer.
→ eBuffSize Integer The size of the data buffer.
← eDataSize Integer The number of bytes read.
11-34 Ethernet, Token Ring, and FDDI Reference

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11
E

thernet, Token R
ing, and F

iber D
istributed D

ata Interfac
TOKEN RING AND FDDI CONSIDERATIONS

This function does not apply to token ring and FDDI.

ASSEMBLY-LANGUAGE INFORMATION

To execute the ERead function from assembly language, call the _Control trap macro
with a value of ENetRead in the csCode field of the parameter block. To execute the
_Control trap asynchronously, include the value ,ASYNC in the operand field.

RESULT CODES

SEE ALSO

See “Using the Default Ethernet Protocol Handler to Read Data” beginning on
page 11-13 for more information on using the ERead function.

ERdCancel 11

The ERdCancel function cancels execution of a specific call to the ERead function.

FUNCTION ERdCancel (thePBptr: EParamBlkPtr;

async: Boolean): OSErr;

thePBptr A pointer to a parameter block of type EParamBlock.

async A Boolean value that specifies whether the function should be
executed asynchronously or synchronously. Specify TRUE for
asynchronous execution.

Parameter block

Field descriptions

ePointer A pointer to the .ENET parameter block that you specified when
you called the ERead function that you want to cancel.

noErr 0 No error
LAPProtErr –94 No protocol is attached or protocol handler pointer

was not 0
reqAborted –1105 ERdCancel or EDetachPH function called
buf2SmallErr –3101 Packet too large for buffer; partial data returned

→ ioCompletion ProcPtr A pointer to completion routine.
← ioResult OSErr The result code.
→ ioRefNum Integer The driver reference number.
→ csCode Integer Always ENetRdCancel for this function.
→ ePointer Ptr A pointer to ERead parameter block.
Ethernet, Token Ring, and FDDI Reference 11-35

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
DESCRIPTION

To cancel an ERead function request using the ERdCancel function, you must have
called the ERead function asynchronously. You specify in the ePointer parameter a
pointer to the parameter block that you used when you called the ERead function.

When you call the ERdCancel function, the pending ERead function that you cancel
receives the reqAborted result code.

TOKEN RING AND FDDI CONSIDERATIONS

This function is not valid for token ring and FDDI.

ASSEMBLY-LANGUAGE INFORMATION

To execute the ERdCancel function from assembly language, call the _Control
trap macro with a value of ENetRdCancel in the csCode field of the parameter
block. To execute the _Control trap asynchronously, include the value ,ASYNC in
the operand field.

RESULT CODES

Obtaining Information About the Ethernet Driver and Switching Its Mode 11

The functions in this section return information about the .ENET driver and switch the
.ENET driver from limited-transmission mode to general-transmission mode.

EGetInfo 11

The EGetInfo function returns information about the .ENET driver.

FUNCTION EGetInfo (thePBptr: EParamBlkPtr;

async: Boolean): OSErr;

thePBptr A pointer to a parameter block of type EParamBlock.

async A Boolean value that specifies whether the function should be
executed asynchronously or synchronously. Specify TRUE for
asynchronous execution.

noErr 0 No error
cbNotFound –1102 ERead not active
11-36 Ethernet, Token Ring, and FDDI Reference

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11
E

thernet, Token R
ing, and F

iber D
istributed D

ata Interfac
Parameter block

Field descriptions

ePointer A pointer to a buffer that is at least 18 bytes in size. The
EGetInfo function returns the information about the
.ENET driver in this buffer.

eBuffSize The size of the buffer pointed to by ePointer.
eDataSize The number of bytes of information that EGetInfo returns in

the buffer pointed to by ePointer.

DESCRIPTION

The EGetInfo function returns information about the .ENET driver. Beginning with
version 58 of AppleTalk, the EGetInfo function returns additional information for
SONIC-based network interface controllers (NICs). For these cards, EGetInfo can
return up to 78 bytes of information. The eDataSize field returns the number of bytes
of information that EGetInfo has placed in the data buffer that you provide. You can
use the value returned in this field to determine whether or not the Ethernet card uses a
SONIC chip. For all cards that are not SONIC based, this field will contain a value of 18.

If you do not know whether the Ethernet card that you are using has a SONIC chip, you
should provide a data buffer that is at least 78 bytes in length. If you are certain that the
Ethernet card that you are using is not SONIC based, you must provide a data buffer
that is at least 18 bytes. Put a pointer to the buffer in the ePointer parameter and the
size of the buffer in the eBuffSize parameter.

For Ethernet cards that are not SONIC based, the EGetInfo function places the
following information in the data buffer:

An incorrect Ethernet address is one that is neither the broadcast address, a multicast
address for which this node is registered, nor the node’s data-link address. A node could
receive an incorrect Ethernet address due to a hardware or software error.

→ ioCompletion ProcPtr A pointer to completion routine.
← ioResult OSErr The result code.
→ ioRefNum Integer The driver reference number.
→ csCode Integer Always ENetGetInfo for this function.
→ ePointer Ptr A pointer to a buffer.
→ eBuffSize Integer The size of the buffer.
← eDataSize Integer The number of bytes returned.

Bytes Information

1–6 Ethernet address of the node on which the driver is installed

7–10 Number of times the receive queue has overflowed

11–14 Number of data transmission operations that have timed out

15–18 Number of packets received that contain an incorrect address
Ethernet, Token Ring, and FDDI Reference 11-37

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
For SONIC-based Ethernet cards, the last 60 bytes in the buffer return information from
the SONIC chip network statistic counters. The EGetInfo function places the following
information in the data buffer:

TOKEN RING AND FDDI CONSIDERATIONS

This function does not apply to token ring and FDDI.

ASSEMBLY-LANGUAGE INFORMATION

To execute the EGetInfo function from assembly language, call the _Control trap
macro with a value of ENetGetInfo in the csCode field of the parameter block.
To execute the _Control trap asynchronously, include the value ,ASYNC in the
operand field.

RESULT CODES

Bytes Information

1–6 Ethernet address of the node on which the driver is installed

7–10 No information returned (zero-filled)

11–14 No information returned (zero-filled)

15–18 No information returned (zero-filled)

19–22 Frames transmitted without error

23–26 Single collision frames

27–30 Multiple collision frames

31–34 Collision frames

35–38 Frames with deferred transmission

39–42 Late collision

43–46 Excessive collisions

47–50 Excessive deferrals

51–54 Internal MAC transmit error

55–58 Frames received without error

59–62 Multicast frames received without error

63–66 Broadcast frames received without error

67–70 Frame check sequence errors

71–74 Alignment errors

75–78 Frames lost due to internal MAC receive errors

noErr 0 No error
11-38 Ethernet, Token Ring, and FDDI Reference

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11
E

thernet, Token R
ing, and F

iber D
istributed D

ata Interfac
ESetGeneral 11

The ESetGeneral function switches the .ENET driver from limited-transmission mode
to general-transmission mode, allowing it to transmit a larger data packet.

FUNCTION ESetGeneral (thePBptr: EParamBlkPtr;

async: Boolean): OSErr;

thePBptr A pointer to a parameter block of type EParamBlock.

async A Boolean value that specifies whether the function should be
executed asynchronously or synchronously. Specify TRUE for
asynchronous execution.

Parameter block

DESCRIPTION

The ESetGeneral function switches the .ENET driver from limited-transmission mode
to general-transmission mode, which enables the .ENET driver to transmit an Ethernet
data packet of up to 1514 bytes. In limited-transmission mode, the .ENET driver allocates
a write-data buffer of 768 bytes. This buffer size is more than sufficient to hold an
Ethernet data packet, which can be no larger than 621 bytes. However, if you want to
send a packet that is larger than the Ethernet data packet, you must use the
general-transmission mode.

SPECIAL CONSIDERATIONS

There is no command to switch the .ENET driver from general-transmission mode to
limited-transmission mode. To switch back to limited-transmission mode, you have
to reset the driver by restarting the computer.

TOKEN RING AND FDDI CONSIDERATIONS

This function does not apply to token ring and FDDI. However, if an application calls this
function for token ring or FDDI, the driver will return a value of noErr in register D0.

ASSEMBLY-LANGUAGE INFORMATION

To execute the ESetGeneral function from assembly language, call the _Control
trap macro with a value of ENetSetGeneral in the csCode field of the parameter
block. To execute the _Control trap asynchronously, include the value ,ASYNC in the
operand field.

RESULT CODES

→ ioCompletion ProcPtr A pointer to completion routine.
← ioResult OSErr The result code.
→ ioRefNum Integer The driver reference number.
→ csCode Integer Always ENetSetGeneral for this function.

noErr 0 No error
memFullErr –108 Insufficient memory in heap
Ethernet, Token Ring, and FDDI Reference 11-39

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
Adding and Removing Ethernet Multicast Addresses 11

The functions in this section add or delete multicast addresses for Ethernet or FDDI for a
particular node and functional addresses for token ring for a particular node.

EAddMulti 11

The EAddMulti function adds a multicast address or a functional address to the node
that is running your application.

FUNCTION EAddMulti (thePBptr: EParamBlkPtr;

async: Boolean): OSErr;

thePBptr A pointer to a parameter block of type EParamBlock.

async A Boolean value that specifies whether the function should be
executed asynchronously or synchronously. Specify TRUE for
asynchronous execution.

Parameter block

Field descriptions

eMultiAddr The multicast address that you want to add and use.

DESCRIPTION

You use the EAddMulti function to add a multicast address for Ethernet or FDDI to
the node that is running your application so that the hardware device driver for that
network type will accept packets delivered to that address. You can also use this function
to add a functional address that serves the same purpose for token ring.

Each time a client of a hardware device driver calls the EAddMulti function for a
particular multicast address, the driver increments a counter for that multicast address.
Each time a client of the hardware device driver calls the EDelMulti function, the
driver decrements the counter for that address. As long as the count for a multicast
address is equal to or greater than 1, the hardware device driver accepts packets directed
to that multicast address. Therefore, if any client of the hardware device driver in the
node has called the EAddMulti function for a particular multicast address, the driver
receives packets delivered to that address. This process also applies to token ring for
functional addresses. For information on how to specify multicast and functional
addresses, see Inside AppleTalk, second edition. Be careful not to use the broadcast
address, which is also described in Inside AppleTalk, as a functional address.

→ ioCompletion ProcPtr A pointer to completion routine.
← ioResult OSErr Result code.
→ ioRefNum Integer Driver reference number.
→ csCode Integer Always ENetAddMulti for

this function.
→ eMultiAddr 6-byte array Multicast address.
11-40 Ethernet, Token Ring, and FDDI Reference

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11
E

thernet, Token R
ing, and F

iber D
istributed D

ata Interfac
TOKEN RING AND FDDI CONSIDERATIONS

If your token ring application requires a functional address, use the EAddMulti function
to register a functional address. Functional addresses are the token ring equivalent of
Ethernet and FDDI multicast addresses. If your FDDI application requires a multicast
address, use the EAddMulti function to register a multicast address.

ASSEMBLY-LANGUAGE INFORMATION

To execute the EAddMulti function from assembly language, call the _Control
trap macro with a value of ENetAddMulti in the csCode field of the parameter
block. To execute the _Control trap asynchronously, include the value ,ASYNC in
the operand field.

RESULT CODES

EDelMulti 11

The EDelMulti function decrements the counter kept by the hardware device driver for
a particular multicast address for Ethernet or FDDI or a particular functional address for
token ring.

FUNCTION EDelMulti (thePBptr: EParamBlkPtr;

async: Boolean): OSErr;

thePBptr A pointer to a parameter block of type EParamBlock.

async A Boolean value that specifies whether the function should be
executed asynchronously or synchronously. Specify TRUE for
asynchronous execution.

Parameter block

Field descriptions

eMultiAddr The multicast address that you no longer want to use.

noErr 0 No error
eMultiErr –91 Invalid address or table is full

→ ioCompletion ProcPtr A pointer to completion routine.
← ioResult OSErr The result code.
→ ioRefNum Integer The driver reference number.
→ csCode Integer Always ENetDelMulti for

this function.
→ eMultiAddr 6-byte array A multicast address.
Ethernet, Token Ring, and FDDI Reference 11-41

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
DESCRIPTION

Each time a client of either the Ethernet or FDDI hardware device driver calls the
EAddMulti function, the driver increments a counter for the multicast address specified
by the eMultiAddr parameter. Each time a client of either the Ethernet or FDDI
hardware device driver calls the EDelMulti function, the driver decrements the counter
for the address specified by the eMultiAddr parameter.

As long as the count for a multicast address is equal to or greater than 1, the hardware
device driver accepts packets directed to that multicast address. When the count for an
address equals 0, the driver removes that address from the list of multicast addresses
that it accepts. For token ring, the same process applies to functional addresses.

SPECIAL CONSIDERATIONS

Because more than one client of the .ENET driver might be using a particular multicast
address, you should call the EDelMulti function only once for each time you called the
EAddMulti function.

TOKEN RING AND FDDI CONSIDERATIONS

If your application added a multicast address for FDDI, you use this function to delete
the address when you no longer need it. If your application added a functional address
for token ring, use this function to delete the address when you no longer need it.
Functional addresses are the token ring equivalent of Ethernet and FDDI multicast
addresses. Be careful not to use the broadcast address as either a multicast or a
functional address. (For information on all three types of addresses, see Inside AppleTalk,
second edition.)

ASSEMBLY-LANGUAGE INFORMATION

To execute the EDelMulti function from assembly language, call the _Control
trap macro with a value of ENetDelMulti in the csCode field of the parameter
block. To execute the _Control trap asynchronously, include the value ,ASYNC in
the operand field.

RESULT CODES

noErr 0 No error
eMultiErr –91 Address not found
11-42 Ethernet, Token Ring, and FDDI Reference

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11
E

thernet, Token R
ing, and F

iber D
istributed D

ata Interfac
Summary of Ethernet, Token Ring, and FDDI 11

Pascal Summary 11

Constants 11

CONST

{.ENET, .TOKN, and .FDDI driver values}

catNetwork = 4; {spCategory for Ethernet NB card}

typeEtherNet = 1; {spCType for Ethernet NB card}

typeTokenRing = 2; {spCType for token ring NB card}

typeFDDI = 11; {spCType for FDDI NB card}

{.ENET driver routine selectors}

ENetSetGeneral = 253; {set to general transmission mode}

ENetGetInfo = 252; {get info}

ENetRdCancel = 251; {cancel read}

ENetRead = 250; {read}

ENetWrite = 249; {write}

ENetDetachPH = 248; {detach protocol handler}

ENetAttachPH = 247; {attach protocol handler}

ENetAddMulti = 246; {add a multicast address}

ENetDelMulti = 245; {delete a multicast address}

Data Structures 11

TYPE EParamBlock =

PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {reserved}

ioVRefNum: Integer; {reserved}

ioRefNum: Integer; {driver reference number}

csCode: Integer; {primary command code}
Summary of Ethernet, Token Ring, and FDDI 11-43

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
CASE Integer OF

ENetWrite, ENetAttachPH, ENetDetachPH, ENetRead, ENetRdCancel,

ENetGetInfo, ENetSetGeneral:

(

eProtType: Integer; {Ethernet protocol type}

ePointer: Ptr; {pointer; use depends on }

{ function}

eBuffSize: Integer; {buffer size}

eDataSize: Integer; {number of bytes read}

);

ENetAddMulti,ENetDelMulti:

(

eMultiAddr: ARRAY[0..5] OF Char; {multicast address}

)

END;

EParamBlkPtr = ^EParamBlock;

Routines 11

Attaching and Detaching an Ethernet Protocol Handler

FUNCTION EAttachPH (thePBptr: EParamBlkPtr; async: Boolean): OSErr;

FUNCTION EDetachPH (thePBptr: EParamBlkPtr; async: Boolean): OSErr;

Writing and Reading Ethernet Packets

FUNCTION EWrite (thePBptr: EParamBlkPtr; async: Boolean): OSErr;

FUNCTION ERead (thePBptr: EParamBlkPtr; async: Boolean):OSErr;

FUNCTION ERdCancel (thePBptr: EParamBlkPtr; async: Boolean): OSErr;

Obtaining Information About the Ethernet Driver and Switching Its Mode

FUNCTION EGetInfo (thePBptr: EParamBlkPtr; async: Boolean): OSErr;

FUNCTION ESetGeneral (thePBptr: EParamBlkPtr; async: Boolean): OSErr;

Adding and Removing Ethernet Multicast Addresses

FUNCTION EAddMulti (thePBptr: EParamBlkPtr; async: Boolean): OSErr;

FUNCTION EDelMulti (thePBptr: EParamBlkPtr; async: Boolean): OSErr;
11-44 Summary of Ethernet, Token Ring, and FDDI

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11
E

thernet, Token R
ing, and F

iber D
istributed D

ata Interfac
C Summary 11

Constants 11

enum {

ENetSetGeneral = 253, /*set "general" mode*/

ENetGetInfo = 252, /*get info*/

ENetRdCancel = 251, /*cancel read*/

ENetRead = 250, /*read*/

ENetWrite = 249, /*write*/

ENetDetachPH = 248, /*detach protocol handler*/

ENetAttachPH = 247, /*attach protocol handler*/

ENetAddMulti = 246, /*add a multicast address*/

ENetDelMulti = 245, /*delete a multicast address*/

};

Data Types 11

#define EParamHeader \

QElem *qLink; /*reserved*/\

short qType; /*reserved*/\

short ioTrap; /*reserved*/\

Ptr ioCmdAddr; /*reserved*/\

ProcPtr ioCompletion; /*completion routine*/\

OSErr ioResult; /*result code*/\

StringPtr ioNamePtr; /*reserved*/\

short ioVRefNum; /*reserved*/\

short ioRefNum; /*driver reference number*/\

short csCode; /*call command code*/

struct EParamMisc1 {

EParamHeader /*general EParams*/

short eProtType; /*Ethernet protocol type*/

Ptr ePointer;

short eBuffSize; /*buffer size*/

short eDataSize; /*number of bytes read*/

};
Summary of Ethernet, Token Ring, and FDDI 11-45

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
Note
The C interface file contains the following structure type definition,
which is incorrect. A corrected version follows it. ◆

typedef struct EParamMisc1 EParamMisc1;

struct EParamMisc2 {

EParamMisc1 EParms1;

char eMultiAddr[6]; /*multicast address*/

};

Note
The following structure type definition is a correction to the
preceding structure that may exist in the interface file. You should
declare the following struct in your application instead of relying
on the interface file. ◆

typedef struct {

EParamHeader

char eMultiAddr[5]; /*multicast address*/

}EParamMisc2;

typedef struct EParamMisc2 EParamMisc2;

union EParamBlock {

EParamMisc1 EParms1;

EParamMisc2 EParms2;

};

typedef union EParamBlock EParamBlock;

typedef EParamBlock *EParamBlkPtr;

Routines 11

Attaching and Detaching an Ethernet Protocol Handler

pascal OSErr EAttachPH (EParamBlkPtr thePBptr, Boolean async);

pascal OSErr EDetachPH (EParamBlkPtr thePBptr, Boolean async);

Writing and Reading Ethernet Packets

pascal OSErr EWrite (EParamBlkPtr thePBptr, Boolean async);

pascal OSErr ERead (EParamBlkPtr thePBptr, Boolean async);

pascal OSErr ERdCancel (EParamBlkPtr thePBptr, Boolean async);
11-46 Summary of Ethernet, Token Ring, and FDDI

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface

11
E

thernet, Token R
ing, and F

iber D
istributed D

ata Interfac
Obtaining Information About the Ethernet Driver and Switching Its Mode

pascal OSErr EGetInfo (EParamBlkPtr thePBptr, Boolean async);

pascal OSErr ESetGeneral (EParamBlkPtr thePBptr, Boolean async);

Adding and Removing Ethernet Multicast Addresses

pascal OSErr EAddMulti (EParamBlkPtr thePBptr, Boolean async);

pascal OSErr EDelMulti (EParamBlkPtr thePBptr, Boolean async);

Assembly-Language Summary 11

Constants 11

ENetSetGeneral EQU 253 ;set to general transmission mode

ENetGetInfo EQU 252 ;get info

ENetRdCancel EQU 251 ;cancel read

ENetRead EQU 250 ;read

ENetWrite EQU 249 ;write

ENetDetachPH EQU 248 ;detach protocol handler

ENetAttachPH EQU 247 ;attach protocol handler

ENetAddMulti EQU 246 ;add a multicast address

ENetDelMulti EQU 245 ;delete a multicast address

Data Structures 11

EParamBlock Parameter Block

16 ioResult word result code
26 csCode word routine selected
28 eMultiAddr 6 bytes multicast address
28 eProtType word Ethernet protocol type
30 ePointer long pointer
34 eBuffSize word size of buffer
36 eDataSize word number of bytes read
Summary of Ethernet, Token Ring, and FDDI 11-47

e

C H A P T E R 1 1

Ethernet, Token Ring, and Fiber Distributed Data Interface
Result Codes 11
noErr 0 No error
eMultiErr –91 Address not found
eLenErr –92 Packet too large or first entry of the write-data structure did not

contain the full 14-byte header
LAPProtErr –94 No protocol handler is attached
excessCollsns –95 Hardware error
memFullErr –108 Insufficient memory in heap
cbNotFound –1102 ERead not active
reqAborted –1105 ERdCancel or EDetachPH function called
buf2SmallErr –3101 Packet too large for buffer; partial data returned
11-48 Summary of Ethernet, Token Ring, and FDDI

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to AppleTalk TOC
	 Introduction to AppleTalk
	 AppleTalk Utilities TOC
	 AppleTalk Utilities
	 Name-Binding Protocol (NBP) TOC
	 Name-Binding Protocol (NBP)
	 Zone Information Protocol (ZIP) TOC
	 Zone Information Protocol (ZIP)
	 AppleTalk Data Stream Protocol (ADSP) TOC
	 AppleTalk Data Stream Protocol (ADSP)
	 AppleTalk Transaction Protocol (ATP) TOC
	 AppleTalk Transaction Protocol (ATP)
	 Datagram Delivery Protocol (DDP) TOC
	 Datagram Delivery Protocol (DDP)
	 AppleTalk Session Protocol (ASP) TOC
	 AppleTalk Session Protocol (ASP)
	 AppleTalk Filing Protocol (AFP) TOC
	 AppleTalk Filing Protocol (AFP)
	 Link-Access Protocol (LAP) Manager TOC
	 Link-Access Protocol (LAP) Manager
	 Ethernet, Token Ring, Fiber Distribution Data Interface TOC
	Ethernet, Token Ring, and Fiber Distributed Data Interface
	About Ethernet, Token Ring, and FDDI Support
	About Multivendor Network Interface Controller (NI...
	About Multicast Addressing

	Using Ethernet, Token Ring, and FDDI Drivers
	Using the Ethernet Driver
	Opening the Ethernet Driver
	Using a Write-Data Structure to Transmit Ethernet ...
	Using the Default Ethernet Protocol Handler to Rea...
	Using Your Own Ethernet Protocol Handler to Read D...
	Changing the Ethernet Hardware Address

	Using the Token Ring Driver
	Applying Ethernet Functions
	Sending and Receiving Data

	Using the FDDI Driver
	Applying Ethernet Functions
	Sending and Receiving Data

	Ethernet, Token Ring, and FDDI Reference
	Data Structures
	The Write-Data Structure
	The Parameter Block for Ethernet, Token Ring, and ...

	Routines
	Attaching and Detaching an Ethernet Protocol Handl...
	Writing and Reading Ethernet Packets
	Obtaining Information About the Ethernet Driver an...
	Adding and Removing Ethernet Multicast Addresses

	Summary of Ethernet, Token Ring, and FDDI
	Pascal Summary
	Constants
	Data Structures
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Constants
	Data Structures

	Result Codes

	 Multinode Architecture TOC
	 Multinode Architecture
	 Glossary
	 Index
	 Colophon

