

C H A P T E R 5

5

A
ppleTalk D

ata S
tream

 P
rotocol (A

D
S

P
)

AppleTalk Data Stream Protocol (ADSP) 5

This chapter describes the AppleTalk Data Stream Protocol (ADSP) that you use to
establish a session to exchange data between two network processes or applications in
which both parties have equal control over the communication. You should read this
chapter if you want to write an application that supports the exchange of more than a
small amount of data between two parties who each can both send and receive streams
of data.

This chapter also describes the AppleTalk Secure Data Stream Protocol (ASDSP), a secure
version of ADSP, that allows users of your application to communicate over an ADSP
session after the users’ identities have been authenticated. Users can then exchange
encrypted data over the session. For your application to use ASDSP, the system on which
it runs must have the AppleTalk Open Collaboration Environment (AOCE) software
installed and must have access to an AOCE server. To use ASDSP, you must also use the
Authentication Manager, which is a component of the AOCE software. For information
on the Authentication Manager, refer to Inside Macintosh: AOCE Application Programming
Interfaces.

ASDSP enhances ADSP with authentication and encryption features. When this chapter
discusses components of ADSP, such as connection ends and connection listeners, you
can assume that the information also applies to ASDSP. The sections in this chapter that
discuss ASDSP describe any specific differences between it and the standard version of
ADSP. To use ASDSP, you should be familiar with ADSP.

For an overview of ADSP and how it fits within the AppleTalk protocol stack, read the
chapter “Introduction to AppleTalk” in this book, which also introduces and defines
some of the terminology used in this chapter. For a complete explanation of the ADSP
specification, see Inside AppleTalk, second edition.

About ADSP 5

ADSP includes both session and transport services, and it is the most commonly used of
the AppleTalk transport protocols. The .DSP driver implements ADSP. ADSP allows you
to establish and maintain a connection between two AppleTalk network entities and
transfer data across this connection as a continuous stream. Because ADSP is a client
of DDP, data that you transmit using ADSP is actually sent and received over the
AppleTalk internet in packets. However, ADSP builds a session connection on top of
the packet transfer services that DDP provides so that applications using ADSP can
exchange data as a continuous stream. Figure 5-1 on page 5-4 shows ADSP and the
underlying protocols that it uses; ADSP is a client of DDP, just as your application is a
client of ADSP.
About ADSP 5-3

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

Figure 5-1 ADSP and its underlying protocols

Communication between two applications using ADSP occurs over a connection that is
made between the two sockets that these network entities use; ADSP assigns a socket to
be used when you initialize each end of the connection, and your application becomes
a client of that socket. Because this connection exists for the duration of the exchange,
ADSP is called a connection-oriented protocol. ADSP manages and controls the data flow
between the two sockets throughout the session to ensure that

■ the data is delivered and received in the order in which it was sent

■ duplicate data is not sent

■ the application or process at the receiving end of the connection has the buffer
capacity to accept the data

In an ADSP session, both ends of the connection have equal control over the communica-
tion in a peer-to-peer relationship. For the two ends of an ADSP connection to function
properly, each must maintain information to control the connection and determine the
connection state. To accommodate these requirements, the socket at either end of the
connection has associated with it information that defines the state of the connection
and information that the application and ADSP use to control the connection and
communicate over it. The combination of a socket and the ADSP information maintained
by the socket client is referred to as a connection end. To create a connection, two
connection ends must be set up and initialized. Each connection end views itself as the
local end and the other as the remote end.

ADSP

DDP

LAP Manager

Port
5-4 About ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5

A
ppleTalk D

ata S
tream

 P
rotocol (A

D
S

P
)

Your application can use ADSP to

■ create a connection end

■ request a connection with a remote connection end

■ create a connection listener to wait passively for connection requests from remote
connection ends (see “Connection Listeners” on page 5-7 for more information)

■ read data from and write it to an open connection

■ close a connection without removing it

■ remove a connection end

Figure 5-2 shows the order in which applications commonly call the ADSP routines to
perform these functions for a connection end. (Figure 5-4 on page 5-8 shows this for a
connection listener.)

Figure 5-2 Steps for creating an ADSP connection end

ADSP provides for a full-duplex data stream between the two ends of the connection
that allows for a full-duplex dialog; this means that either end of the connection can
call routines to send data at any time. (However, full-duplex does not mean that both
connection ends actually send electrical signals at the same time; ADSP controls this
process.) See the chapter “Introduction to AppleTalk” in this book for more information
on full-duplex communication.

Open connection

(read bytes, write bytes,

send attention message,

get status, forward reset)

Close connection

Create connection end

Remove connection end

Use connection

About ADSP 5-5

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

In addition to the full-duplex data stream that an ADSP session maintains, ADSP allows
either end of a connection to send an attention message to the other end without
interrupting the primary flow of data.

Among the features that ADSP provides are

■ an end-of-message feature that lets you break streams of data into logical messages

■ an attention-message feature that lets you and your partner application signal to each
other outside the normal exchange of data

■ a forward-reset feature that lets you cancel the delivery of any data that is in your
connection end’s send queue and any data that you have sent that is in transit and
that the remote connection end has not received

■ a built-in flow control feature that ensures that your application sends data only if its
remote partner has the buffer capacity to receive it

Connections, Connection Ends, and Connection States 5
A connection is an association between two sockets that supports the flow of data
between the clients of those sockets in a reliable way. Each socket can maintain
concurrent ADSP connections with several other sockets, but there can be only one
ADSP connection between any two sockets at one time. For example, a single socket on
node A can have multiple concurrent sessions consisting of one connection to a socket on
node B, one connection to a socket on node C, and one connection to a socket on node D.

When you establish an ADSP connection end, you allocate a nonrelocatable block of
memory called a connection control block (CCB) in which ADSP stores state informa-
tion about the connection end. When you initialize the connection end, ADSP uses the
CCB to set up control information that it maintains and uses for synchronizing communi-
cation with the other socket client and for error checking.

You can read the CCB fields to gain information about the current state of the connection
end. In addition to the unique AppleTalk internet address associated with a socket, each
instance of a connection end has associated with it a connection ID that identifies it. You
can open a connection for a socket and close that connection without actually removing
the connection end, and then open another connection for the same socket. When you
close a connection, the socket number remains associated with the connection, as do the
data structures whose memory you allocated. ADSP uses this to ensure that any data
meant for the old connection end is not delivered to the new connection end using the
same socket number and data structures.

ADSP cannot deliver packets to a connection end based on the AppleTalk internet socket
address alone. The connection ID ensures that a packet is delivered to the specific
connection end for which it was intended. You call the new connection ID (dspNewCID)
routine to cause ADSP to assign a connection ID to the connection end before you open a
connection. ADSP assigns a connection ID number, which it includes in every packet that
it delivers from your connection end to a remote connection end.
5-6 About ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5

A
ppleTalk D

ata S
tream

 P
rotocol (A

D
S

P
)

Figure 5-3 ADSP connection ends and their components

Figure 5-3 shows two connection ends and the client applications that use them to
participate in a session with each other over an ADSP connection. This figure shows
the components that constitute a connection end.

At any time, either end of a potential ADSP connection can initiate a session. Also, either
end of the connection can tear down the connection when it is no longer needed.

■ When two connection ends establish communication, the connection is considered an
open connection.

■ When both connection ends terminate the connection and dispose of the connection
information each maintains, the connection is considered a closed connection.

■ If one connection end is established but the other connection end is unreachable or
has disposed of its connection information, the connection is considered a half-open
connection.

No communication can occur over a half-open or closed connection.

To prevent a half-open connection from tying up resources, ADSP automatically closes
any half-open connection that cannot reestablish communication within two minutes
and informs its client that the connection is closed. Under these circumstances, ADSP
will call the application-supplied completion routine for any pending asynchronous
ADSP routine, if one was provided. Otherwise, the pending ADSP routine will return to
the calling program with an errState error message. If you attempt to call an ADSP
routine on a half-open connection, ADSP also returns the errState error message.

Connection Listeners 5
A connection listener or a connection-listening socket is a socket that accepts open-
connection requests and passes them along to its client, a connection server process,
for further processing. The server then selects a socket and requests ADSP to open a
connection using that socket. The connection listener can also deny an open-connection
request. By specifying filtering values for the network address of the requester, you can
control which requests are accepted or denied. The use of a connection listener is typical
of a server environment in which a server, such as a file server, is registered with NBP

Application

Connection end

ApplicationSession

Connection end

Connection control and

state information

Connection ID

Socket Internet address

Connection control and

state information

Connection ID

Socket Internet address
About ADSP 5-7

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

using a single name. Various connection ends throughout the network contact the
server’s connection listener with open-connection requests. The connection server can
honor the requests, or it can deny them. It might deny a request, for example, when its
resources are exhausted. Figure 5-4 shows the tasks for an ADSP connection listener in
the order that applications commonly perform them.

Figure 5-4 Standard tasks for an ADSP connection listener

Reliable Delivery of Data 5
ADSP guarantees that data bytes are delivered in the same order as they were sent and
that they are free of duplicates. It ensures that all data sent is delivered to the remote
connection end’s receive buffer. To accomplish this, ADSP associates a sequence number
with each byte that it sends. ADSP discards any out-of-sequence data or any duplicates
that are delivered. ADSP uses the sequence numbers to ensure that all of the data that
one end sends is received by the other end. If data is lost, ADSP retransmits it. ADSP
can send the data again because the data remains in the sending connection end’s send
queue until the remote end actually receives a copy of it. For more information about
how ADSP delivers data, see Inside AppleTalk, second edition.

Unsolicited ADSP Events 5
After you open a connection, you can receive events that are not generated in response to
any of the ADSP calls that your application makes. The other connection end or ADSP
initiates these events. For example, the remote connection end can send you an attention
message or a forward reset.

Remove

connection listener

Listen for

connection request

Get connection ID

Create

connection end

Create connection

listener

Deny connection

request

Go to steps for creating an ASDP connection end.
5-8 About ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5

A
ppleTalk D

ata S
tream

 P
rotocol (A

D
S

P
)

You receive a forward reset event when the remote connection end cancels delivery of all
outstanding data to your connection end. A forward reset causes ADSP to discard all
data in the send queue, all data in transit to the remote connection end, and all data in
the remote connection end’s receive queue that the client has not yet read.

The remote connection end can close the connection, and this, too, will generate an event
notification for your connection end. You also receive event notification when ADSP
tears down a connection because the remote end has become unreachable.

ADSP sets the bits of your connection end’s connection control block user flags field to
identify the type of event. For more information about this field, see “Creating and Using
a Connection Control Block” on page 5-12. You can provide a user routine that ADSP is
to call whenever you receive one of these events. This user routine is similar in concept
and use to an ioCompletion routine that many of the other AppleTalk protocols use.
See “Writing a User Routine for Connection Events” on page 5-26 for information on
how to write a user routine.

About ASDSP 5

This section describes the secure version of ADSP referred to as AppleTalk Secure
Data Stream Protocol (ASDSP). ASDSP is a superset of ADSP that includes authentica-
tion and encryption features. To use ASDSP, you should be familiar with both ADSP
and ASDSP.

ASDSP features allow you to provide users of your application with the ability to
exchange encrypted data across a secure session that is established after the users’
identities are proven through what is known as the authentication process. Before
transmitting the data that a user sends, ASDSP encrypts it and then decrypts the data
before delivering it to the application at the remote connection end. Users might want
to identify one another, for example, to verify that a piece of electronic mail came from
the sender who claimed to be its author, and they might want to encrypt data that
traverses a network if that data is considered confidential or private and they do not
want others to intercept and read the data.

To verify the identities of two ends of a connection, an ASDSP application relies on
information that is provided by an Apple Open Collaboration Environment (AOCE)
authentication server. Your ASDSP client application at the connection end that initiates
the session calls the AOCE Authentication Manager to acquire the information necessary
for the authentication process from the authentication server, and then it passes this
information on to ASDSP.

Note
Because ASDSP is dependent on information from the authentication
server, your ASDSP application can only run on systems that also run
AOCE and that have access to an AOCE authentication server. If
the AOCE software is installed on the system that runs your application
and if the system has access to an AOCE authentication server, your
application can use ASDSP. ◆
About ASDSP 5-9

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

You perform the first part of the authentication process by requesting information from
the authentication server and giving that information to ASDSP to transmit to the other
end of the connection. The authentication process culminates in a challenge-and-reply
handshake that the ASDSP code performs on behalf of your ASDSP client application
at each end of the connection to ensure that the application users are who they claim to
be. The ASDSP client application of the connection end that retrieves the information
from the authentication server and makes the request to open the session is called the
initiator; the ASDSP client application of the connection end that receives the request
and the information from the server is called the recipient.

The Authentication Process 5
This section describes the general strategy of the authentication process. Understanding
what this process entails can be helpful in understanding the meaning and use of the
parameters that you get from the authentication server and pass to ASDSP.

The initiator and the recipient each have a private key. The private key, also called a user
key or client key, is a number that is derived from a password; the number is used by an
encryption algorithm.

The initiator calls the authentication server to request information and credentials
to be used by ASDSP in establishing an authenticated session. The credentials contain
information that is required in order to prove that the users of both ends of the
connection are who they claim to be. The user of the initiator ASDSP client application
gives the authentication server his own name or identity and that of the user of the
recipient ASDSP client application.

The authentication server returns to the initiator a unique session key that the server
generates exclusively for use by the authentication process for this session; the session
key is valid for a limited time only. The authentication server also returns to the initiator
a set of credentials that are encrypted in the recipient’s private key. The credentials
contain the session key also and the initiator’s identity, as well as the identity of an
intermediary or proxy, if one was used to obtain the credentials from the authentica-
tion server.

The initiator passes a block of data containing the credentials to ASDSP, and ASDSP
on the initiator’s end sends the credentials to ASDSP on the recipient’s end. The latter
decrypts the entire credentials block, obtaining the session key from the credentials
block. ASDSP on the recipient’s end then uses the session key in the authentication
process that it performs on behalf of the recipient. ASDSP has the recipient’s private
key, which it uses to decrypt the credentials. If the authentication process succeeds,
ASDSP returns all of the credentials to the recipient.

Because the initiator and ASDSP on behalf of the recipient must each decrypt the session
key using their own private key, they can each be convinced that the other is who they
claim to be if they can conclude that the other knows the session key. The need for this
conviction begins the challenge-and-reply authentication process that enables each end
to confirm that the other end also knows the unique session key.
5-10 About ASDSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5

A
ppleTalk D

ata S
tream

 P
rotocol (A

D
S

P
)

ASDSP performs the challenge-and-reply process on behalf of the client applications in
a manner that is transparent to the applications. If the authentication process completes
successfully, ASDSP opens a secure connection; if the authentication process fails,
ASDSP returns an error code to both the initiator and the recipient and tears down the
connection that was established to perform the authentication process. To learn more
about the challenge-and-reply process, see the chapter “Authentication Manager” in
Inside Macintosh: AOCE Application Programming Interfaces.

The Data Encryption Feature 5
After ASDSP successfully completes the authentication process, the two ends of the
connection whose identities have been verified can exchange data and they can also
encrypt that data. The ASDSP encryption feature allows each party to send data that can
be trusted to be securely transmitted in a manner that is unreadable by anyone other
than the intended recipient until that data is decrypted by ASDSP and delivered to the
recipient at the other end of the ASDSP session connection. ASDSP encrypts only data
in the main data stream; it does not encrypt data in attention messages or ASDSP
packet headers.

Using ADSP 5

This section describes how to use ADSP to

■ open and maintain an ADSP connection, including how to
n initialize the connection end (dspInit)
n set options that control the behavior of the connection end (dspOptions)
n open the connection (dspOpen)
n read (dspRead) and write (dspWrite) data over the connection
n send an attention code and an attention message to the remote connection end

(dspAttention)
n close the connection (dspClose) and remove it (dspRemove)

■ create and use a connection listener, including how to
n initialize a connection listener (dspCLInit)
n activate the connection listener, causing it to listen for an open-connection request

(dspCLListen), filtering requests that you will accept by restricting network
addresses

n initialize (dspInit) and open (dspOpen) a connection end in response to an open
request that you want to accept

n read (dspRead) and write (dspWrite) data over the connection and close the
connection (dspClose)

n remove the connection listener when you are finished with it (dspCLRemove)

■ handle unsolicited connection events using your own user routine
Using ADSP 5-11

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
You execute ADSP routines by calling the Device Manager’s PBControl function. When
you call the PBControl function for an ADSP routine, you provide a pointer to a
parameter block of type DSPParamBlock.

You use the parameter block fields to specify the input parameters that ADSP requires to
execute the command. The parameter block also includes fields whose values ADSP
returns. For a complete description of the DSP parameter block and its fields, see “The
DSP Parameter Block” beginning on page 5-38.

Allocating Memory for ADSP 5
To open and maintain an ADSP session, you must allocate memory required for the
session. Depending on the ADSP routine that you call, you must allocate the following:

■ storage of the state information that ADSP maintains at either end of a connection (see
the discussion of the connection control block in “Connections, Connection Ends, and
Connection States” on page 5-6)

■ a parameter block that you use to pass parameters when you execute an ADSP routine

■ a send queue and a receive queue

■ an attention message buffer

This memory belongs to ADSP until you explicitly remove the connection end.

Creating and Using a Connection Control Block 5
When you establish an ADSP connection end, you must allocate a nonrelocatable block
of memory for (and provide a pointer to) a connection control block (CCB) data
structure, which ADSP uses to store state information about the connection end. This
memory belongs to ADSP until you explicitly remove the connection end using the
dspRemove routine (see “dspRemove” on page 5-62). Only then can you release or reuse
the memory that you allocated for the CCB.

Most of the fields of the CCB are for ADSP’s internal use. Although you must not alter
any of the CCB fields except one, the userFlags field, you may poll them to gain
information about the current state of the connection end.

When your connection end receives an unsolicited event, such as an attention message
or a forward reset, ADSP’s interrupt handler sets a bit corresponding to the event type in
the userFlags field and calls your user routine, if you provided one. If you did not
provide a user routine, you can test these bits to determine when an unsolicited event
occurs on the connection end.

After you read them, you must clear the bits either through your user routine or directly
before you handle the event.

The CCB is a record of type TRCCB that must consist of 242 bytes. See “The ADSP
Connection Control Block Record” beginning on page 5-35 for a description of the
CCB and the fields that comprise it.
5-12 Using ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

Opening and Maintaining an ADSP Connection 5
To use ADSP to establish and maintain a connection between a socket on your local node
and a remote socket, use the following procedure:

1. Use the Device Manager’s OpenDriver function to open the .MPP driver, and then
use it again to open the .DSP driver. The .MPP driver must be open before you open
the .DSP driver. The OpenDriver function call for the .DSP driver returns the driver
reference number. You must supply this reference number each time you call the
Device Manager’s PBControl function to execute an ADSP routine.

2. Allocate nonrelocatable memory for a CCB, send and receive queues, and an attention-
message buffer. If you need to allocate the memory dynamically while the program
is running, use the NewPtr routine. Otherwise, the way in which you allocate the
memory depends on the compiler you are using. (Listing 5-1 on page 5-17 shows how
to do this in Pascal.) The memory that you allocate becomes the property of ADSP
when you call the dspInit routine to establish a connection end. You cannot write
any data to this memory except by calling ADSP, and you must ensure that the
memory remains locked until you call the dspRemove routine to eliminate the
connection end.
The CCB is 242 bytes. The attention-message buffer must be 570 bytes. When you
send bytes to a remote connection end, ADSP stores the bytes in a buffer called the
send queue. Until the remote connection end acknowledges their receipt, ADSP keeps
the bytes you sent in the send queue so that they are available to be retransmitted if
necessary. When the local connection end receives bytes, it stores them in a buffer,
called the receive queue, until you read them. The sizes you need for the send and
receive queues depend on the lengths of the messages being sent.
ADSP does not transmit data from the remote connection end until there is room for
it in your receive queue. If your send or receive queues are too small, they limit the
speed with which you can transmit and receive data. A queue size of 600 bytes should
work well for most applications. If you are using ADSP to send a continuous flow
of data, a larger data buffer improves performance. If your application is sending or
receiving the user’s keystrokes, a smaller buffer should be adequate. The constant
minDSPQueueSize, which is defined in the MPW interface file for ADSP, indicates
the minimum queue size that you can use.
If you are using a version of the .DSP driver prior to version 1.5, you must allocate
send and receive queues that are 12 percent larger than the actual buffer sizes you
need. You must do this in order to provide some extra space for use by the .DSP
driver. Version 1.5 and later versions of the .DSP driver use a much smaller, and
variable, portion of buffer space for overhead. The .DSP driver version number is
stored in the low byte of the qFlags field, which is the first field in the dCtlQHdr
field in the driver’s device control entry (DCE) data structure. Version 1.5 of the
.DSP driver has a version number of 4 in the DCE. See the chapter “Device Manager”
in Inside Macintosh: Devices for information on the DCE.

3. Use the dspInit routine to establish a connection end. You must provide pointers
to the CCB, send queue, receive queue, and attention-message buffer. You may also
provide a pointer to a user routine that ADSP calls when your connection end
receives an unsolicited connection event. See the section“Writing a User Routine for
Connection Events” on page 5-26 for information on providing a user routine.
Using ADSP 5-13

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

If there is a specific socket that you want to use for the connection end, you can
specify the socket number in the localSocket parameter. If you want ADSP to
assign the socket for you, specify 0 for the localSocket parameter; in this case,
ADSP returns the socket number when the dspInit routine completes execution.

4. If you wish, you can use the Name-Binding Protocol (NBP) routines to add the name
and address of your connection end to the node’s names table. See the chapter
“Name-Binding Protocol (NBP)” in this book for information on NBP.

5. You can use the dspOptions routine to set several parameters that control the
behavior of the connection end. Because every parameter has a default value, the use
of the dspOptions routine is optional. You can specify values for the following
parameters:
n The sendBlocking parameter, which sets the maximum number of bytes that

may accumulate in the send queue before ADSP sends a packet to the remote
connection end. You can experiment with different values of the sendBlocking
parameter to determine which provides the best performance. Under most
circumstances, the default value of 16 bytes gives good performance.

n The badSeqMax parameter, which sets the maximum number of out-of-sequence
data packets that the local connection end can receive before requesting the remote
connection end to retransmit the missing data. Under most circumstances, the
default value of 3 provides good performance.

n The useCheckSum parameter, which determines whether the Datagram Delivery
Protocol (DDP) should compute a checksum and include it in each packet that it
sends to the remote connection end. Using checksums slows communications
slightly. Normally ADSP and DDP perform enough error checking to ensure safe
delivery of all data. Set the useCheckSum parameter to 1 only if you feel that the
network is highly unreliable.

6. Call the dspOpen routine to open the connection. The dspOpen routine has four
possible modes of operation: ocAccept, ocEstablish, ocRequest, and
ocPassive. Normally you use either the ocRequest or ocPassive mode. You
must specify one of these four modes for the ocMode parameter when you call
the dspOpen routine.
The ocAccept mode is used only by connection servers. The ocEstablish mode
is used by routines that determine their connection-opening parameters and establish
a connection independently of ADSP, but use ADSP to transmit and receive data.
Use the ocRequest mode when you want to establish communications with a
specific socket on the AppleTalk internet. When you execute the dspOpen routine
in the ocRequest mode, ADSP sends an open-connection request to the address
you specify.
If the socket to which you send the open-connection request is a connection listener,
the connection server that operates that connection listener can select any socket
on the internet to be the connection end that responds to the open-connection request.
To restrict the socket from which you will accept a response to your open-connection
request, specify a value for the filterAddress parameter to the dspOpen routine.
When your connection end receives a response from a socket that meets the
restrictions of the filterAddress parameter, it acknowledges the response and
ADSP completes the connection.
5-14 Using ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

To use the ocRequest mode, you must know the complete internet address of the
remote socket, and the ADSP client at that address must either be a connection listener
or have executed the dspOpen routine in the ocPassive mode. You can use the NBP
routines to obtain a list of names of objects on the internet and to determine the
internet address of a socket when you know its name. See the chapter “Name-Binding
Protocol (NBP)” in this book for information on the NBP routines.
Use the ocPassive mode when you expect to receive an open-connection request
from a remote socket. You can specify a value for the filterAddress parameter to
restrict the network number, node ID, or socket number from which you will accept
an open-connection request. When your connection end receives an open-connection
request that meets the restrictions of the filterAddress parameter, it acknowledges
the request and ADSP completes the connection.
You can poll the state field in the CCB to determine when the connection end is
waiting to receive an open-connection request, when the connection end is waiting to
receive an acknowledgment of an open-connection request, and when the connection
is open. See the section “The ADSP Connection Control Block Record” beginning on
page 5-35 for a description of the CCB fields. Alternatively, you can check the result
code for the dspOpen routine when the routine completes execution. If the routine
returns the noErr result code, then the connection is open.

7. Use the dspRead routine to read data that your connection end has received from
the remote connection end. Use the dspWrite routine to send data to the remote
connection end. Use the dspAttention routine to send attention messages to the
remote connection end.
The dspWrite routine places data in the send queue. ADSP is a full-duplex, symmetric
communications protocol: You can send data at any time, and your connection end can
receive data at any time, even at the same time as you are sending data. ADSP
transmits the data in the send queue when one of the following conditions occurs:
n You call the dspWrite routine with the flush parameter set to a nonzero number.
n The number of bytes in the send queue equals or exceeds the blocking factor that

you set with the dspOptions routine.
n The send timer expires. The send timer sets the maximum amount of time that can

pass before ADSP sends all unsent data in the send queue to the remote connection
end. ADSP calculates the best value to use for this timer and sets it automatically.

n A connection event requires that the local connection end send an acknowledgment
packet to the remote connection end.

If you send more data to the send queue than it can hold, the dspWrite routine does
not complete execution until it has written all the data to the send queue. If you
execute the dspWrite routine asynchronously, ADSP returns control to your program
and writes the data to the send queue as quickly as it can. This technique provides the
most efficient use of the send queue by your program and by ADSP. Because ADSP
does not remove data from the send queue until that data has been not only sent but
also acknowledged by the remote connection end, using the flush parameter to the
dspWrite routine does not guarantee that the send queue is empty. You can use
the dspStatus routine to determine how much free buffer space is available in the
send queue.
Using ADSP 5-15

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

The dspRead routine reads data from the receive queue into your application’s
private data buffer. ADSP does not transmit data until there is space available in
the other end’s receive queue to accept it. Because a full receive queue slows the
communications rate, you should read data from the receive queue as often as
necessary to keep sufficient buffer space available for new data. You can use either
of two techniques to do this:
n Allocate a small receive queue (about 600 bytes) and call the dspRead routine

asynchronously. Your completion routine for the dspRead routine should then
call the dspRead routine again.

n Allocate a large receive queue and call the dspRead routine less frequently.
If there is less data in the receive queue than the amount you specify with the
reqCount parameter to the dspRead command, the command does not complete
execution until there is enough data available to satisfy the request. There are three
exceptions to this rule:
n If the end-of-message bit in the ADSP packet header is set, the dspRead command

reads the data in the receive queue, returns the actual amount of data read in the
actCount parameter, and returns the eom parameter set to 1.

n If you have closed the connection end before calling the dspRead routine (that is,
the connection is half open), the command reads whatever data is available and
returns the actual amount of data read in the actCount parameter.

n If ADSP has closed the connection before you call the dspRead routine and there is
no data in the receive queue, the routine returns the noErr result code with the
actCount parameter set to 0 and the eom parameter set to 0.

In addition to the byte-stream data format implemented by the dspRead and
dspWrite routines, ADSP provides a mechanism for sending and receiving control
signals or information separate from the byte stream. You use the dspAttention
routine to send an attention code and an attention message to the remote connection
end. When your connection end receives an attention message, ADSP’s interrupt
handler sets the eAttention flag in the userFlags field of the CCB and calls your
user routine. Your user routine must first clear the userFlags field. Then your
routine can read the attention code and attention message and take whatever action
you deem appropriate.
Because ADSP is often used by terminal emulation programs and other applications
that pass the data they receive on to the user without processing it, attention messages
provide a mechanism for the applications that are clients of the connection ends to
communicate with each other. For example, you could use attention messages to
implement a handshaking and data-checking protocol for a program that transfers
disk files between two applications, neither one of which is a file server. Or a database
server on a mainframe computer that uses ADSP to communicate with Macintosh
computer workstations could use the attention mechanism to inform the workstations
when the database is about to be closed down for maintenance.

8. When you are ready to close the ADSP connection, you can use the dspClose or
dspRemove routine to close the connection end. Use the dspClose routine if you
intend to use that connection end to open another connection and do not want
to release the memory you allocated for the connection end. Use the dspRemove
routine if you are completely finished with the connection end and want to release
the memory.
5-16 Using ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

You can continue to read data from the receive queue after you have called the
dspClose routine, but not after you have called the dspRemove routine. You can
use the dspStatus routine to determine whether any data is remaining in the receive
queue, or you can read data from the receive queue until both the actCount and
eom fields of the dspRead parameter block return 0.
If you set the abort parameter for the dspClose or dspRemove routine to 0, then
ADSP does not close the connection or the connection end until it has sent—and
received acknowledgment for—all data in the send queue and any pending attention
messages. If you set the abort parameter to 1, then ADSP discards any data in the
send queue and any attention messages that have not already been sent.
After you have executed the dspRemove routine, you can release the memory you
allocated for the CCB and data buffers.

Listing 5-1 illustrates the use of ADSP. This routine opens the .MPP and .DSP drivers and
allocates memory for its internal data buffers, for the CCB, and for the send, receive, and
attention-message buffers. Then the routine uses the dspInit routine to establish a
connection end and uses NBP to register the name of the connection end on the internet.
(The user routine specified by the userRoutine parameter to the dspInit function is
shown in Listing 5-3 on page 5-28.) Next, Listing 5-1 uses the dspOptions routine to
set the blocking factor to 24 bytes. This routine then uses NBP to determine the address
of a socket whose name was selected by the user and sends an open-connection request
(dspOpen) to that socket. When the dspOpen routine completes execution, it sends data
and an attention message to the remote connection end and reads data from its receive
queue. Finally, the routine closes the connection end with the dspRemove routine and
releases the memory it allocated.

Listing 5-1 Using ADSP to establish and use a connection

PROCEDURE MyADSP;

CONST

qSize = 600; {queue space}

myDataSize = 128; {size of internal read/write buffers}

blockFact = 24; {blocking factor}

TYPE

{Modify the connection control block to add storage for A5.}

myTRCCB =

RECORD

myA5: LongInt;

u: TRCCB;

END;

VAR

dspSendQPtr: Ptr;

dspRecvQPtr: Ptr;
Using ADSP 5-17

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
dspAttnBufPtr: Ptr;

myData2ReadPtr: Ptr;

myData2WritePtr: Ptr;

myAttnMsgPtr: Ptr;

dspCCB: myTRCCB;

myDSPPBPtr: DSPPBPtr;

myMPPPBPtr: MPPPBPtr;

myNTEName: NamesTableEntry;

myAddrBlk: AddrBlock;

drvrRefNum: Integer;

mppRefNum: Integer;

connRefNum: Integer;

gReceivedAnEvent: Boolean;

myAttnCode: Integer;

tempFlag: Byte;

tempCFlag: Integer;

myErr: OSErr;

BEGIN

myErr := OpenDriver('.MPP', mppRefNum); {open .MPP driver}

IF myErr <> noErr THEN DoErr(myErr); {check and handle error}

myErr := OpenDriver('.DSP', drvrRefNum); {open .DSP driver}

IF myErr <> noErr THEN DoErr(myErr); {check and handle error}

{Allocate memory for data buffers.}

dspSendQPtr := NewPtr(qSize); {ADSP use only}

dspRecvQPtr := NewPtr(qSize); {ADSP use only}

dspAttnBufPtr := NewPtr(attnBufSize); {ADSP use only}

myData2ReadPtr := NewPtr(myDataSize);

myData2WritePtr := NewPtr(myDataSize);

myAttnMsgPtr := NewPtr(myDataSize);

myDSPPBPtr := DSPPBPtr(NewPtr(SizeOf(DSPParamBlock)));

myMPPPBPtr := MPPPBPtr(NewPtr(SizeOf(MPPParamBlock)));

WITH myDSPPBPtr^ DO {set up dspInit parameters}

BEGIN

ioCRefNum := drvrRefNum; {ADSP driver ref num}

csCode := dspInit;

ccbPtr := @dspCCB; {pointer to CCB}

userRoutine := @myConnectionEvtUserRoutine;

{see Listing 5-3}

sendQSize := qSize; {size of send queue}

sendQueue := dspSendQPtr; {send-queue buffer}

recvQSize := qSize; {size of receive queue}
5-18 Using ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

recvQueue := dspRecvQPtr; {receive-queue buffer}

attnPtr := dspAttnBufPtr; {receive-attention buffer}

localSocket := 0; {let ADSP assign socket}

END;

gReceivedAnEvent := FALSE;

dspCCB.myA5 := SetCurrentA5; {save A5 for the user routine}

{Establish a connection end.}

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);

IF myErr <> noErr THEN DoErr(myErr);

{check and handle error}

connRefNum := myDSPPBPtr^.ccbRefNum;

{save CCB ref num for later}

NBPSetNTE(@myNTEName, 'The Object', 'The Type',

 '*', myDSPPBPtr^.localSocket);

{set up NBP names table entry}

WITH myMPPPBPtr^ DO {set up PRegisterName }

{ parameters}

BEGIN

interval := 7; {retransmit every 7*8=56 ticks}

count := 3; {retry 3 times}

entityPtr := @myNTEName; {name to register}

verifyFlag := 1; {verify this name}

END;

{Register this socket.}

myErr := PRegisterName(myMPPPBPtr, FALSE);

{register this socket}

IF myErr <> noErr THEN DoErr(myErr);

{check and handle error}

WITH myDSPPBPtr^ DO {set up dspOptions parameters}

BEGIN

ioCRefNum := drvrRefNum; {ADSP driver ref num}

csCode := dspOptions;

ccbRefNum := connRefNum; {connection ref num}

sendBlocking := blockFact; {quantum for data packet}

badSeqMax := 0; {use default}

useCheckSum := 0; {don't calculate checksum}

END;

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);

{set options}

IF myErr <> noErr THEN DoErr(myErr);

{check and handle error}
Using ADSP 5-19

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
PickASocket(myAddrBlk); {routine using the PLookupName }

{ function to pick a socket }

{ for the connection}

{Open a connection with the selected socket.}

WITH myDSPPBPtr^ DO {set up dspOpen parameters}

BEGIN

ioCRefNum := drvrRefNum; {ADSP driver ref num}

csCode := dspOpen;

ccbRefNum := connRefNum; {connection ref num}

remoteAddress := myAddrBlk; {address of remote socket }

{ from PLookupName function}

filterAddress := myAddrBlk; {address filter,specified }

{ socket address only}

ocMode := ocRequest; {open connection mode}

ocInterval := 0; {use default retry interval}

ocMaximum := 0; {use default retry maximum}

END;

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);

{open a connection}

IF myErr <> noErr THEN DoErr(myErr); {check and handle error}

{The connection with the selected socket is open, so now send }

{ to the send queue exactly myDataSize number of bytes.}

WITH myDSPPBPtr^ DO {set up dspWrite parameters}

BEGIN

ioCRefNum := drvrRefNum; {ADSP driver ref num}

csCode := dspWrite;

ccbRefNum := connRefNum; {connection ref num}

reqCount := myDataSize; {write this number of bytes}

dataPtr := myData2WritePtr; {pointer to send queue}

eom := 1; {1 means last byte is }

{ logical end-of-message}

flush := 1; {1 means send data now}

END;

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);

{send data to the remote }

{ connection}

IF myErr <> noErr THEN DoErr(myErr);

{check and handle error}
5-20 Using ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

{Now send an attention message to the remote connection end.}

WITH myDSPPBPtr^ DO {set up dspAttention parameters}

BEGIN

ioCRefNum := drvrRefNum; {ADSP driver ref num}

csCode := dspAttention;

ccbRefNum := connRefNum; {connection ref num}

attnCode := 0; {user-defined attention code}

attnSize := myDataSize; {length of attention message}

attnData := myAttnMsgPtr; {attention message}

END;

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);

IF myErr <> noErr THEN DoErr(myErr);

{check and handle error}

{Now read from the receive queue exactly myDataSize number }

{ of bytes.}

WITH myDSPPBPtr^ DO {set up dspRead parameters}

BEGIN

ioCRefNum := drvrRefNum; {ADSP driver ref num}

csCode := dspRead;

ccbRefNum := connRefNum; {connection ref num}

reqCount := myDataSize; {read this number of bytes}

dataPtr := myData2ReadPtr; {pointer to read buffer}

END;

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);

{read data from the remote }

{ connection}

IF myErr <> noErr THEN DoErr(myErr); {check and handle error}

{We're finished with the connection, so remove it.}

WITH myDSPPBPtr^ DO {set up dspRemove parameters}

BEGIN

ioCRefNum := drvrRefNum; {ADSP driver ref num}

csCode := dspRemove;

ccbRefNum := connRefNum; {connection ref num}

abort := 0; {don't close until }

{ everything is sent and }

{ received}

END;

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);

{close and remove the }

{ connection}

IF myErr <> noErr THEN DOErr(myErr);

{check and handle error}
Using ADSP 5-21

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
{You're finished with this connection, so release the memory.}

DisposPtr(dspSendQPtr);

DisposPtr(dspRecvQPtr);

DisposPtr(dspAttnBufPtr);

DisposPtr(myData2ReadPtr);

DisposPtr(myData2WritePtr);

DisposPtr(myAttnMsgPtr);

DisposPtr(Ptr(myDSPPBPtr));

DisposPtr(Ptr(myMPPPBPtr));

END; {MyADSP}

Creating and Using a Connection Listener 5
A connection listener is a special sort of ADSP connection end that cannot receive or
transmit data streams or attention messages. The sole function of a connection listener
is to wait passively to receive an open-connection request and to inform its client, the
connection server, when it receives one. The connection server can then accept or deny
the open-connection request. If it accepts the request, the connection server selects a
socket to use as a connection end, establishes a connection end on that socket, and sends
an acknowledgment and connection request back to the requesting connection end. The
connection server can use the same socket as it used for the connection listener, or it
can select a different socket as the connection end.

Use the following procedure to establish a connection listener and to use that connection
listener to open a connection with a remote connection end:

1. Use the Device Manager’s OpenDriver function to open the .MPP driver and then
use the OpenDriver function to open the .DSP driver. The OpenDriver function
returns the reference number for the .DSP driver. You must supply this reference
number each time you call the .DSP driver.

2. Allocate nonrelocatable memory for a connection control block, which is described
in “Connections, Connection Ends, and Connection States” on page 5-6. The CCB
is 242 bytes. A connection listener does not need send and receive queues or an
attention-message buffer. The memory that you allocate becomes the property of
ADSP when you call the dspCLInit routine to establish a connection listener. You
cannot write any data to this memory except by calling ADSP, and you must ensure
that the memory remains locked until you call the dspRemove routine to eliminate
the connection end.

3. Call the dspCLInit routine to establish a connection listener. You must provide a
pointer to the CCB.
If there is a specific socket that you want to use for the connection listener, you can
specify the socket number in the localSocket parameter. If you want ADSP to
assign the socket for you, specify 0 for the localSocket parameter. ADSP returns
the socket number when the dspCLInit routine completes execution.
5-22 Using ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

4. If you wish, you can use the NBP routines to add the name and address of your
connection listener to the node’s names table. See the chapter “Name-Binding
Protocol (NBP)” in this book for information on NBP.

5. Use the dspCLListen routine to cause the connection listener to wait for an open-
connection request. Because the dspCLListen routine does not complete execution
until it receives a connection request, you should call this routine asynchronously.
You can specify a value for the filterAddress parameter to restrict the network
number, node ID, or socket number from which you will accept an open-connection
request.
When the dspCLListen routine receives an open-connection request that meets
the restrictions of the filterAddress parameter, it returns a noErr result code
(if you executed the routine asynchronously, it places a noErr result code in the
ioResult parameter) and places values in the parameter block for the remoteCID,
remoteAddress, sendSeq, sendWindow, and attnSendSeq parameters.

6. If you want to open the connection, call the dspInit routine to establish a connection
end. You can use any available socket on the node for the connection end, including
the socket that you used for the connection listener. Because a single socket can have
more than one CCB connected with it, the socket can function simultaneously as a
connection end and a connection listener.
You can check the address of the remote socket to determine if it meets your criteria for
a connection end. Although the filterAddress parameter to the dspCLListen
routine provides some screening of socket addresses, it cannot check for network
number ranges, for example, or for a specific set of socket numbers. If for some reason
you want to deny the connection request, call the dspDeny routine, specifying the CCB
of the connection listener in the ccbRefNum parameter. Because the dspCLListen
routine completes execution when it receives an open-connection request, you must
return to step 5 to wait for another connection request.

7. Call the dspOpen routine to open the connection. Specify the value ocAccept for the
ocMode parameter and specify in the ccbRefNum parameter the reference number
of the CCB for the connection end that you want to use. When you call the dspOpen
routine, you must provide the values returned by the dspCLListen routine for
the remoteCID, remoteAddress, sendSeq, sendWindow, and attnSendSeq
parameters.
You can poll the state field in the CCB to determine when the connection is open.
Alternatively, you can check the result code for the dspOpen routine when the routine
completes execution. If the routine returns the noErr result code, then the connection
is open.

8. You can now send and receive data and attention messages over the connection, as
described in “Opening and Maintaining an ADSP Connection” beginning on page 5-13.
When you are ready to close the connection, you can use the dspClose or dspRemove
routine, both of which are also described in the section “Creating and Using a
Connection Control Block.”

9. When you are finished using the connection listener, you can use the dspCLRemove
routine to eliminate it. Once you have called the dspCLRemove routine, you can
release the memory you allocated for the connection listener’s CCB.
Using ADSP 5-23

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
Listing 5-2 illustrates the use of ADSP to establish and use a connection listener. It opens
the .MPP and .DSP drivers and allocates memory for the CCB. Then it uses the
dspCLInit routine to establish a connection listener, uses NBP to register the name of
the connection end on the internet, and uses the dspCLListen routine to wait for a
connection request. When the routine receives a connection request, it calls the dspOpen
routine to complete the connection.

Listing 5-2 Using ADSP to establish and use a connection listener

VAR

dspCCBPtr: TPCCB;

myDSPPBPtr: DSPPBPtr;

myMPPPBPtr: MPPPBPtr;

myNTEName: NamesTableEntry;

drvrRefNum: Integer;

mppRefNum: Integer;

connRefNum: Integer;

myErr: OSErr;

BEGIN

myErr := OpenDriver('.MPP', mppRefNum);

{open .MPP driver}

IF myErr <> noErr THEN DoErr(myErr);

{check and handle error}

myErr := OpenDriver('.DSP', drvrRefNum);

{open .DSP driver}

IF myErr <> noErr THEN DoErr(myErr);

{check and handle error}

{Allocate memory for data buffers.}

dspCCBPtr := TPCCB(NewPtr(SizeOf(TRCCB)));

myDSPPBPtr := DSPPBPtr(NewPtr(SizeOf(DSPParamBlock)));

myMPPPBPtr := MPPPBPtr(NewPtr(SizeOf(MPPParamBlock)));

WITH myDSPPBPtr^ DO {set up dspCLInit parameters}

BEGIN

ioCRefNum := drvrRefNum; {ADSP driver ref num}

csCode := dspCLInit;

ccbPtr := dspCCBPtr; {pointer to CCB}

localSocket := 0; {local socket number}

END;

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);

{establish a connection listener}

IF myErr <> noErr THEN DoErr(myErr);

{check and handle error}

connRefNum := myDSPPBPtr^.ccbRefNum;

{save CCB ref num for later}
5-24 Using ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

NBPSetNTE(@myNTEName, 'The Object', 'The Type',

 '*', myDSPPBPtr^.localSocket);

{set up NBP names table entry}

WITH myMPPPBPtr^ DO {set up PRegisterName parameters}

BEGIN

interval := 7; {retransmit every 7*8=56 ticks }

count := 3; { and retry 3 times}

entityPtr := @myNTEname; {name to register}

verifyFlag := 1; {verify this name}

END;

myErr := PRegisterName(myMPPPBPtr, FALSE);

{register this name}

IF myErr <> noErr THEN DoErr(myErr);

{check and handle error}

WITH myDSPPBPtr^ DO {set up dspCLListen parameters}

BEGIN

ioCRefNum := drvrRefNum; {ADSP driver ref num}

csCode := dspCLListen;

ccbRefNum := connRefNum; {connection ref num}

filterAddress := AddrBlock(0);

{connect with anybody}

END;

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), TRUE);

{listen for connection requests}

WHILE myDSPPBPtr^.ioResult = 1 DO

BEGIN

{Return control to user while waiting for a connection }

{ request.}

GoDoSomething;

END;

IF myErr <> noErr THEN DoErr(myErr);

{check and handle error}

WITH myDSPPBPtr^ DO {set up dspInit parameters}

BEGIN

ioCRefNum := drvrRefNum; {ADSP driver ref num}

csCode := dspInit;

ccbPtr := @dspCCB; {pointer to CCB}

userRoutine := @myConnectionEvtUserRoutine;

sendQSize := qSize; {size of send queue}

sendQueue := dspSendQPtr; {send-queue buffer}

recvQSize := qSize; {size of receive queue}

recvQueue := dspRecvQPtr; {receive-queue buffer}
Using ADSP 5-25

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
attnPtr := dspAttnBufPtr; {receive-attention buffer}

localSocket := 0; {let ADSP assign socket}

END;

dspCCB.myA5 := SetCurrentA5; {save A5 for the user routine}

{Establish a connection end.}

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);

IF myErr <> noErr THEN DoErr(myErr);

{check and handle error}

connRefNum := myDSPPBPtr^.ccbRefNum;

{save CCB ref num for later}

{You received a connection request: now open a connection. }

{ The dspCLListen call has returned values into the }

{ remoteCID, remoteAddress, sendSeq, sendWindow, }

{ and attnSendSeq fields of the parameter block.}

WITH myDSPPBPtr^ DO {set up dspOpen parameters}

BEGIN

ioCRefNum := drvrRefNum; {ADSP driver ref num}

csCode := dspOpen;

ccbRefNum := connRefNum; {connection ref num}

ocMode := ocAccept; {open connection mode}

ocInterval := 0; {use default retry interval}

ocMaximum := 0; {use default retry maximum}

END;

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);

{open a connection}

IF myErr <> noErr THEN DoErr(myErr)

{check and handle error}

END; {MyCLADSP}

Writing a User Routine for Connection Events 5
When you execute the dspInit routine, you can specify a pointer to a routine that
you provide (referred to as the user routine). Whenever an unsolicited connection event
occurs, ADSP sets a flag in the CCB and calls the user routine. The user routine must
clear the flag to acknowledge that it has read the flag field, and then it can respond to the
event in any manner you deem appropriate. The CCB flags are described in“The ADSP
Connection Control Block Record” beginning on page 5-35. The four following types
of unsolicited connection events set flags in the CCB:

■ ADSP has been informed by the remote connection end that the remote connection
end is about to close the connection. An appropriate response might be to store a flag
5-26 Using ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

indicating that the connection end is about to close. When your application regains
control, it can then display a dialog box informing the user of this event and asking
whether the application should attempt to reconnect later.

■ ADSP has determined that the remote connection end is not responding and so has
closed the connection. Your user routine can attempt to open a new connection
immediately. Alternatively, you can store a flag indicating that the connection has
closed, and when your application regains control, it can display a dialog box asking
the user whether to attempt to reconnect.

■ ADSP has received an attention message from the remote connection end. Depending
on what you are using the attention-message mechanism for, you might want to read
the attention code in the attnCode field of the CCB and the attention message
pointed to by the attnPtr field of the CCB.

■ ADSP has received a forward reset command from the remote client end. It has then
discarded all ADSP data not yet delivered, including the data in the receive queue of
the local client end, and has resynchronized the connection. Your response to this
event depends on the purpose for which you are using the forward reset mechanism.
You might want to resend the last data you have sent or inform the user of the event.

When ADSP calls your user routine, the CPU is in interrupt-processing mode and
register A1 contains a pointer to the CCB of the connection end that generated the event.
You can examine the userFlags field of the CCB to determine what event caused the
interrupt, and you can examine the state field of the CCB to determine the current state
of the connection.

Because the CPU is set to interrupt-processing mode, your user routine must preserve
all registers other than A0, A1, D0, D1, and D2. Your routine must not make any direct
or indirect calls to the Memory Manager, and it cannot depend on handles to unlocked
blocks being valid. If you want to use any of your application’s global variables, you must
save the contents of the A5 register before using the variables, and you must restore the
A5 register before your routine terminates. Listing 5-1 and Listing 5-3 illustrate the use of
the CCB to store the pointer to your application’s global variables.

If you want to execute a routine each time an unsolicited connection event occurs but the
interrupt environment is too restrictive, you can specify a NIL pointer to the user routine
and periodically poll the userFlags field of the CCB.

▲ W A R N I N G

When an unsolicited connection event occurs, you must clear the bit in
the userFlags field by setting it to 0 or the connection will hang. To
ensure that you do not lose any attention messages, you must read any
attention messages into an internal buffer before you clear the bit in the
userFlags field. ▲

Listing 5-3 on page 5-28 shows the user routine called by Listing 5-1 on page 5-17. When
this routine is called, it first checks the CCB to determine the source of the interrupt
and then clears the bit in the userFlags field of the CCB. If the routine has received
an attention message, the user routine reads the message into an internal buffer before
it clears the flag bit. The definitions of procedures PushA5, GetMyTRCCBA5, and
PopA5 are shown in Listing 5-3 for your convenience. In a complete application these
procedures would be defined in the calling routine (see Listing 5-1 for an example).
Using ADSP 5-27

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
Listing 5-3 An ADSP user routine

PROCEDURE PushA5; {moves current value of A5 onto stack}

INLINE $2F0D; {MOVE.L A5,-(SP)}

PROCEDURE GetMyTRCCBA5; {retrieves A5 from the head of the TRCCB }

{ (pointed to by A1) and puts it in A5 register}

INLINE $2A69, $FFFC; {MOVE.L -4(A1), A5}

PROCEDURE PopA5; {restores A5 from stack}

INLINE $2A5F; {MOVE.L (SP)+, A5}

PROCEDURE MyConnectionEvtUserRoutine;

BEGIN

{The connection received an unexpected connection event. Find }

{ out what kind and process accordingly.}

PushA5; {save the current A5}

GetMyTRCCBA5; {set up A5 to point to your }

{ application's global variables}

WITH dspCCB.u DO

BEGIN

IF BAND(userFlags, eClosed) <> 0 THEN TellUserItsClosed;

IF BAND(userFlags, eTearDown) <> 0 THEN TellUserItsBroken;

IF BAND(userFlags, eFwdReset) <> 0 THEN TellUserItsReset;

IF BAND(userFlags, eAttention) <> 0 THEN

BEGIN {the event is an attention message}

myAttnCode := AttnCode;

{get the attention code}

CopyAttnMsg(AttnPtr, AttnSize, @myAttnData);

{copy the attention message into your buffer}

tempFlag := userFlags;

tempCFlag := eAttention;

BClr(LongInt(tempFlag), tempCFlag);

{clear the flag}

userFlags := tempFlag;

{Do something with the message.}

END;

gReceivedAnEvent := TRUE

END;

PopA5 {restore the current A5}

END;
5-28 Using ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

Using ASDSP 5

You can write an application that uses the AppleTalk Secure Data Stream Protocol
(ASDSP) to

■ open a secure ASDSP connection (sdspOpen)

■ transmit encrypted data across a secure session (dspWrite using the encrypt flag)

■ read data decrypted by ASDSP that was sent as encrypted across a secure session
(dspRead)

The initiator end of your ASDSP client application must call the AOCE Authentication
Manager to obtain credentials to pass on to ASDSP. ASDSP passes these credentials to
the recipient end of the client application and uses them to establish a secure session in
which the users of the client applications at both ends of the connection are positively
identified. See “About ASDSP” beginning on page 5-9 for more information about this
process. ASDSP client applications at either end of a connection can send data to each
other that ASDSP encrypts for transmission and then decrypts before delivering it to the
client at the receiving end.

An application that currently uses ADSP needs little modification to use ASDSP. To open
an ASDSP connection, the client application at each end must issue the secure data stream
protocol open routine (sdspOpen) instead of the standard open routine (dspOpen).
The sdspOpen routine uses a parameter block that, in addition to the standard ADSP
parameters required to open a connection, contains the identity and credentials used in
the challenge process; only the initiator end of the connection passes the credentials to
ASDSP as input parameter values. The initiator and the recipient ends of a session each
open the connection in a different manner:

■ The initiator end of a session calls the sdspOpen routine using the request mode to
direct ASDSP to open a connection with a specific socket.

■ The recipient end of a session calls the sdspOpen routine in either passive mode or
accept mode. A recipient end of a connection can be either of the following:
n a specific socket that waits passively to receive an ASDSP connection request (the

connection end associated with the socket calls the sdspOpen routine with a value
of ocPassive for the ocMode parameter)

n a connection listener that listens for connection requests and passes them on to a
connection server (the connection listener calls the sdspOpen routine with a value
of ocAccept for the ocMode parameter, and the connection server accepts and
acknowledges receipt of a connection request)

You issue the sdspOpen routine by calling the Device Manager’s PBControl function
and passing it a pointer to the DSP parameter block for ASDSP that holds all of the input
and output parameters for the call. The parameters that the sdspOpen call requires
differ for the initiator and recipient ends of a connection. The next section describes how
to open an ASDSP connection and how to send encrypted data across it.
Using ASDSP 5-29

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

Opening a Secure Connection 5
To open a secure ASDSP connection, both the initiator and the recipient must call the
sdspOpen routine after calling the dspInit routine and, optionally, the dspOptions
routine. First this section describes how the initiator part of an application opens a
secure connection. Then it describes how the recipient end of an application opens
a secure connection.

From the Initiator’s End 5

An initiator can send a request to open a secure session to

■ a specific socket whose client application has opened a connection end to wait
passively for a connection request

■ a connection listener whose function is to accept requests for secure connections and
pass those requests on to a connection server

The initiator makes either an AOCE AuthTradeProxyForCredentials call or an
AOCE AuthGetCredentials call to the authentication server. It passes to the authenti-
cation server its own name and the name of the recipient and gets back the session key
and the credentials for the session. For an explanation of the calls that the initiator must
make to the Authentication Manager, see the chapter “Authentication Manager” in Inside
Macintosh: AOCE Application Programming Interfaces.

Through the sdspOpen call, the initiator passes the credentials to ASDSP to send to the
recipient. ASDSP decrypts the credentials and passes the decrypted credential informa-
tion to the recipient.

To open a secure ASDSP connection, the initiator performs the following procedure:

1. Determine if the Apple Open Collaboration Environment (AOCE) software is installed
by calling the Gestalt function. See the chapter “Introduction to AOCE” in Inside
Macintosh: AOCE Application Programming Interfaces for a description of the selector
values that you use.

2. Allocate memory for the required data structures identified in this step. The memory
belongs to ASDSP until the routine completes execution, after which you can either
release or reuse the memory. You must either allocate nonrelocatable memory or lock
the memory until the routine completes. See the chapter “Authentication Manager” in
Inside Macintosh: AOCE Application Programming Interfaces for a description of the
memory that you need to allocate for calls that you make to that interface. The data
structures that you need to allocate memory for are listed here:
n An ASDSP parameter block of type SDSPParamBlock. You pass a pointer to this

parameter block as the value of the paramBlock parameter to the PBControl
function. (See “The ASDSP Parameter Block” on page 5-41.)

n A workspace buffer that the sdspOpen routine uses internally whose size is equal to
sdspWorkSize. The memory for this buffer must be aligned on an even boundary.
You pass a pointer to this buffer as the value of the workspace parameter.

n A buffer for the credentials retrieved from the authentication server and passed
to ASDSP.

n A buffer for the session key retrieved from the authentication server and passed to
ASDSP. This is a data structure of type AuthKey.
5-30 Using ASDSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

3. Call the Authentication Manager’s AuthGetUTCTime function to get the universal
coordinated time (UTC). You base the credentials expiration time that you specify
as input to the AuthGetCredentials function on the UTC. See the chapter
“Authentication Manager” for a description of the AuthGetUTCTime function.

4. Obtain your (the initiator’s) identity and the recipient’s record ID. (You can use the
local identity or get a specific identity for the initiator.) You need to pass these values
to the authentication server to get the session key and credential block from the server.
See the chapter “Authentication Manager” for a discussion of identities and complete
instruction on how to get these values.

5. Call the Authentication Manager’s AuthGetCredentials function or
AuthTradeProxyForCredentials function to get the credentials and the session
key. You use these values as input to the sdspOpen routine. See the chapter
“Authentication Manager” for information on the AuthGetCredentials and
AuthTradeProxyForCredentials functions.
You pass the AuthGetCredentials function or AuthTradeProxyForCredentials
function the following values returned from the functions that you called in the
previous steps:
n The initiator’s identity.
n A pointer to a buffer containing the record ID for the recipient.
n The desired expiration time of the credentials. You use the expiry parameter to

specify for how long you want the credentials to be valid. Credentials are valid for
at most eight hours after they are returned to the initiator by the server. You base
the expiration time on the UTC time returned by the AuthGetUTCTime function.

n The expected length of the credentials. A buffer three times the size of a packed
record ID is usually sufficient for credentials. The AOCE constant
kPackedRecordIDMaxBytes specifies the size of a single packed record ID.

6. Call the sdspOpen routine to open a secure connection. To call the sdspOpen routine,
you call the Device Manager’s PBControl function and specify sdspOpen as the
value of the csCode parameter. The parameter block for the sdspOpen routine
includes fields also used for the standard dspOpen routine. In addition to these
parameters, you specify parameters used in the authentication process to establish
the secure connection.
The initiator application calls the sdspOpen routine with a value of ocRequest for
the ocMode parameter to direct ASDSP to open a connection with a specific socket on
the AppleTalk internet. When you execute the sdspOpen routine in the ocRequest
mode, ASDSP sends an open-connection request to the address you specify.
If the socket to which you send the open-connection request is a connection listener,
the connection server that operates that connection listener can select any socket on
the internet to be the connection end that responds to the open-connection request. To
restrict the socket from which you will accept a response to your open-connection
request, specify a value for the filterAddress parameter to the sdspOpen routine.
To use the ocRequest mode, you must know the complete internet address of the
remote socket, and the ASDSP client at that address must either be a connection
listener or have executed the sdspOpen routine in the ocPassive mode. You can use
the NBP routines to obtain a list of the names of objects on the internet and to
determine the internet address of a socket when you know its name. See the chapter
“Name-Binding Protocol (NBP)” in this book for information on the NBP routines.
Using ASDSP 5-31

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

In addition to the standard ADSP parameters required for a dspOpen call, the
initiator supplies the following input values to the sdspOpen call:

From the Recipient End 5

To open a secure ASDSP connection, the recipient performs the following procedure:

1. Allocate memory for the following data structures. The memory belongs to ASDSP
until the routine completes execution, after which you can either release or reuse the
memory. You must either allocate nonrelocatable memory or lock the memory until
the routine completes.
n An ASDSP secure parameter block of type SDSPParamBlock. You pass a pointer to

this parameter block as the value of the paramBlock parameter to the PBControl
function. (See “The ASDSP Parameter Block” beginning on page 5-41.)

n A workspace buffer that the sdspOpen routine uses internally whose size is equal
to sdspWorkSize. The memory for this buffer must be aligned on an even
boundary. You must pass a pointer to the buffer as the value of the workspace
parameter.

n A data structure of type AuthKey for the session key retrieved from the authentica-
tion server and passed to ASDSP. ASDSP breaks out from the credentials block the
session key encrypted in the recipient’s private key and returns the session key to
the recipient in the sessionKey buffer.

n A buffer for the record ID of the initiator that ASDSP returns to the recipient in
response to the recipient’s sdspOpen routine. You pass a pointer to this buffer as
the value of the initiator parameter. ASDSP breaks out the initiator’s record ID
from the credential block that the initiator passes to ASDSP and returns it to the
recipient. See the chapter “Authentication Manager” in Inside Macintosh: AOCE
Application Programming Interfaces for a description of how to create a maximum-
size record ID structure that is large enough to hold any record ID.

n A buffer for the record ID of the intermediary that ASDSP returns to the recipient if
an intermediary is found in the credentials. You pass a pointer to this buffer as the
value of the intermediary parameter. An intermediary is a proxy that has used
the AuthTradeProxyForCredentials function to obtain the credentials used in

Parameter Value

secure To open a secure authenticated connection, pass a value
of TRUE. To open a normal, unauthenticated connection,
pass a value of FALSE.

sessionKey A pointer to the encryption key returned from
the AuthGetCredentials or
AuthTradeProxyForCredentials function.

credentialsSize The value that the AuthGetCredentials function or
the AuthTradeProxyForCredentials function returned
that specifies the length of the credentials.

credentials A pointer to the credentials that the AuthGetCredentials
function or the AuthTradeProxyForCredentials
function returned.

workspace A pointer to the workspace buffer that you allocated, which
is for ASDSP’s internal use.
5-32 Using ASDSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

the authentication process. See the chapter “Authentication Manager” in Inside
Macintosh: AOCE Application Programming Interfaces for a discussion of the use of an
intermediary and the AuthTradeProxyForCredentials function and for a
description of how to create a maximum-size record ID structure that is large
enough to hold any record ID.

2. Call the sdspOpen routine to open a secure connection. To call the sdspOpen routine,
you call the Device Manager’s PBControl function and specify sdspOpen as the
value of the csCode parameter. The parameter block for the sdspOpen routine
includes fields also used for the standard dspOpen routine. In addition to these
parameters, you specify parameters used in the authentication process to establish
the secure connection.
A recipient end of a connection can be either a connection listener that listens for
connection requests and passes them on to a connection server or a socket that waits
passively to receive a connection request.
If the recipient is a connection listener, it calls the sdspOpen routine with a
value of ocAccept for the ocMode parameter. The connection server accepts
and acknowledges receipt of a connection request. When you call the sdspOpen
routine, you must provide the values returned by the dspCLListen routine
for the remoteCID, remoteAddress, sendSeq, sendWindow, and attnSendSeq
parameters. You can poll the state field in the CCB to determine when the
connection is open. Alternatively, you can check the result code for the sdspOpen
routine when the routine completes execution. If the routine returns the noErr
result code, then the connection is open.
If the recipient is a connection end associated with a passive socket that calls the
sdspOpen routine with a value of ocPassive for the ocMode parameter, use the
ocPassive mode when you expect to receive an open-connection request from a
remote socket. You can specify a value for the filterAddress parameter to restrict
the network number, node ID, or socket number from which you will accept an
open-connection request.
You can poll the state field in the CCB to determine when the connection end is
waiting to receive an open-connection request, when the connection end is waiting to
receive an acknowledgment of an open-connection request, and when the connection
is open. See the section “The ADSP Connection Control Block Record” beginning on
page 5-35 for a description of the CCB fields. Alternatively, you can check the result
code for the dspOpen routine when the routine completes execution. If the routine
returns the noErr result code, then the connection is open.
In addition to the standard ADSP parameters required for a dspOpen call, the
recipient supplies the following input values to the sdspOpen call:

Parameter Value

sessionKey A pointer to a data structure of type AuthKey, which you
allocated. ASDSP copies the session key into this buffer if
an authenticated connection was successfully opened.

workspace A pointer to the workspace buffer that you allocated, which is
for ASDSP’s internal use.

recipient The identity of the recipient.
continued
Using ASDSP 5-33

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
If a secure connection was successfully opened, ASDSP returns the following values:

Sending Encrypted Data Across a Secure Connection 5

After a secure connection is established, both ends can send encrypted data over the
session. ASDSP client applications use the dspWrite routine to send data, encrypted
or not, over a secure connection. You can turn the encryption feature on or off on a
message-by-message basis by setting one flag to direct ASDSP to encrypt the data and
setting another flag to terminate the message.

To set these flags, you use the bits of the end-of-message (eom) field; this field is part of
the ioParams variant record of the DSP parameter block that you pass to the dspWrite
routine. For secure connections, the eom field comprises these two single-bit flags instead
of a zero-nonzero byte. You can use the dspEncryptMask and dspEOMMask masks to
set these flags, or you can use the dspEncryptBit or dspEOMBit constant.

Note
Apart from the dspWrite routine’s eom parameter, the interface to
ADSP remains unchanged in regard to encryption. ◆

The encryption process is transparent to the client application that receives the data;
ASDSP determines if the received information is encrypted, and, if so, it decrypts the
byte stream before copying the data to the read buffer specified by the dspRead routine.

initiator A pointer to a maximum-size record ID. ASDSP copies the
initiator’s record ID into this structure if an authenticated
connection was successfully opened.

intermediary A pointer to a maximum-size record ID. ASDSP copies the
intermediary’s record ID into this structure if an authenticated
connection was successfully opened and an intermediary was
used to obtain the credentials used to authenticate the call.

Parameter Value

issueTime The time when the credentials were issued. ASDSP copies
this value from the credentials.

expiry The time when the credentials expire. ASDSP copies this
value from the credentials.

sessionKey The encryption key for the session. ASDSP copies this value
from the credentials.

initiator A pointer to a maximum-size record ID structure. If an
authenticated connection was successfully opened, this
structure holds the initiator’s record ID.

hasIntermediary A flag that is set to TRUE if an intermediary was used to
obtain the credentials.

intermediary A pointer to a maximum-size record ID. If an authentication
connection was successfully opened and an intermediary
was used to obtain the credentials, this structure holds the
intermediary’s record ID.

Parameter Value
5-34 Using ASDSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

To write data that ASDSP encrypts and then transmits or to terminate data encryption,
you call the dspWrite routine using the Device Manager’s PBControl function.

■ Set the encrypt bit of the eom field (bit 1) of the DSP parameter block. To set the
encrypt bit, you use the dspEncryptMask mask or the dspEncryptBit constant.
Note that ASDSP checks this flag on the first write of the connection or the first write
following a write for which the end-of-message flag (bit 0 of the eom field) is set.

■ Set the end-of-message bit (bit 0) of the eom field to terminate the encrypted message.
To set the end-of-message bit, you use the dspEOMMask mask or the dspEOMBit
constant.

If you want to encrypt all messages, you can simply set the encrypt bit on all
dspWrite calls.

ADSP Reference 5

This section describes the data structures and routines that are specific to ADSP and
to its secure version, ASDSP. The “Data Structures” section shows the Pascal data
structures for

■ the ADSP connection control block

■ the address block record

■ the DSP parameter block

■ the ASDSP version of the DSP parameter block

■ the TRSecureParams record

The “Routines” section describes routines for setting up and tearing down an ADSP
or an ASDSP (secure) connection, setting up and tearing down an ADSP connection
listener, and maintaining an ADSP connection over which to send and receive data
and enable encryption of the data to be sent.

Data Structures 5
This section describes the connection control block that you allocate for use by ADSP in
maintaining the state of a connection end and the DSP parameter block that you use to
specify input parameters for and receive output parameters from an ADSP routine. It
also describes the address block record that you use to specify the remote connection
end’s AppleTalk internet address.

The ADSP Connection Control Block Record 5

The connection control block (CCB) data structure is a record of type TRCCB that consists
of 242 bytes. ADSP uses the CCB to store state information about the connection end.
You allocate a nonrelocatable block of memory for this data structure when you create a
ADSP Reference 5-35

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
connection end. You may read the fields in the CCB to obtain information about the
connection end, but you are not allowed to write to any of the fields except one, the
userFlags field.

TYPE TRCCB =

PACKED RECORD

ccbLink: TPCCB; {link to next CCB}

refNum: Integer; {reference number}

state: Integer; {state of the connection end}

userFlags: Byte; {user flags for connection}

localSocket: Byte; {local socket number}

remoteAddress: AddrBlock; {remote end internet address}

attnCode: Integer; {attention code received}

attnSize: Integer; {size of attention data}

attnPtr: Ptr; {pointer to attention data}

reserved: PACKED ARRAY[1..220] OF Byte;

{reserved for use by ADSP}

END;

Field descriptions

ccbLink A pointer to the next CCB. This field is for use by ADSP only.
refNum The reference number of the CCB. This number is assigned by

ADSP when you establish the connection end.
state The state of the connection end, as follows:

State Value Meaning

sListening 1 The socket is a connection listener—
that is, a socket that accepts ADSP
requests to open connections and
passes them on to a socket client. A
connection listening socket passes
the open-connection request on to a
routine that can establish the connec-
tion on any socket. The connection
listening state is ordinarily used only
by connection servers.

sPassive 2 The socket client is inactive but capable
of accepting an ADSP request to open
a connection. Unlike a connection
listening socket, a socket client in the
sPassive state can accept an open-
connection request only to establish
itself as a connection end.

sOpening 3 The socket client has sent an
open-connection request and is waiting
for acknowledgment.

sOpen 4 The connection is open.
5-36 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

userFlags Flags that indicate an unsolicited connection event has occurred. An
unsolicited connection event is an event initiated by ADSP or the
remote connection end that is not in response to any ADSP routine
that you executed.
Each time an unsolicited connection event occurs, ADSP sets a flag
in the userFlags field of the CCB and calls the routine you
specified in the userRoutine parameter to the dspInit routine
(if any). The user routine must read the userFlags field and then
clear the flag to 0. ADSP cannot notify your routine of future events
unless you clear the flag after each event.
ADSP recognizes four types of unsolicited connection events, one
corresponding to each of the flags in this field. The events and flags
are defined as follows, where bit 7 is the most significant bit:

localSocket The socket number through which DDP transmits and receives the
ADSP packets.

remoteAddress The AppleTalk internet address of the socket used by the remote
connection end.

sClosing 5 The socket client has requested that
ADSP close the connection, and ADSP
is sending data or waiting for acknowl-
edgment of data it has sent before
closing the connection.

sClosed 6 The connection is closed.

Event
Flag
bit Meaning

eClosed 7 ADSP has been informed by the
remote connection end that the remote
connection end has closed the
connection.

eTearDown 6 ADSP has determined that the remote
connection end is not responding and
so has closed the connection.

eAttention 5 ADSP has received an attention
message from the remote connection
end.

eFwdReset 4 ADSP has received a forward reset
command from the remote connection
end, has discarded all ADSP data not
yet delivered—including the data in
the local client end’s receive queue—
and has resynchronized the
connection.

None 3–0 Reserved.

State Value Meaning
ADSP Reference 5-37

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
attnCode The attention code received by ADSP when the remote connection
end sends an attention message.

attnSize The size of the attention message received by ADSP when the
remote connection end sends an attention message.

attnPtr A pointer to a buffer containing the attention message received by
ADSP from the remote connection end.

reserved A data buffer reserved for use by ADSP.

The Address Block Record 5

The address block record defines a data structure of AddrBlock type. ADSP routines
use this data type to specify the AppleTalk internet socket address of the remote
connection end in the CCB. You can use NBP to get the address of an application that
is registered with NBP. See the chapter “Name-Binding Protocol (NBP)” in this book for
more information. ATP functions also use this data type to specify AppleTalk internet
socket addresses.

TYPE AddrBlock =

PACKED RECORD

aNet: Integer; {network number}

aNode: Byte; {node ID}

aSocket: Byte; {socket number}

END;

Field descriptions

aNet The network number to which the node belongs that is running the
ADSP or ATP client application whose address you are specifying.

aNode The node ID of the machine running the ADSP or ATP client
application whose address you are specifying.

aSocket The number of the socket used for the ADSP or ATP client
application.

The DSP Parameter Block 5

The ADSP routines, which you execute by calling the Device Manager’s PBControl
function, require a pointer to a DSP parameter block that holds all of the input and
output values associated with the routine. The DSP parameter block contains variant
records used by particular routines. The DSPParamBlock data type defines the DSP
parameter block.

This section defines the fields that are common to all ADSP routines that use the DSP
parameter block. The fields that are used for specific routines only are defined in the
descriptions of the routines to which they apply. The reserved fields, which are used
internally by the .DSP driver or not at all, are not defined.
5-38 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

TYPE DSPParamBlock =

PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {reserved}

ioVRefNum: Integer; {reserved}

ioCRefNum: Integer; {driver reference number}

csCode: Integer; {primary command code}

qStatus: LongInt; {reserved}

ccbRefNum: Integer; {CCB reference number}

CASE Integer OF

dspInit, dspCLInit:

(ccbPtr: TPCCB; {pointer to CCB}

userRoutine: ProcPtr; {pointer to user routine}

sendQSize: Integer; {size of send queue}

sendQueue: Ptr; {pointer to send queue}

recvQSize: Integer; {size of receive queue}

recvQueue: Ptr; {pointer to receive queue}

attnPtr: Ptr; {pointer to attention-message }

{ buffer}

localSocket: Byte; {local socket number}

filler1: Byte); {filler for proper alignment}

dspOpen, dspCLListen, dspCLDeny:

(localCID: Integer; {local connection ID}

remoteCID: Integer; {remote connection ID}

remoteAddress: AddrBlock; {remote internet address}

filterAddress: AddrBlock; {address filter}

sendSeq: LongInt; {send sequence number}

sendWindow: Integer; {size of remote buffer}

recvSeq: LongInt; {receive sequence number}

attnSendSeq: LongInt; {attention send seq number}

attnRecvSeq: LongInt; {attention receive seq num}

ocMode: Byte; {connection-opening mode}

ocInterval: Byte; {interval bet. open requests}

ocMaximum: Byte; {retries of open-conn req}

filler2: Byte); {filler for proper alignment}

dspClose, dspRemove:

(abort: Byte; {abort send requests}

filler3: Byte); {filler for proper alignment}
ADSP Reference 5-39

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
dspStatus:

(statusCCB: TPCCB; {pointer to CCB}

sendQPending: Integer; {bytes waiting in send queue}

sendQFree: Integer; {available send-queue buffer}

recvQPending: Integer; {bytes in receive queue}

recvQFree: Integer); {avail receive-queue buffer}

dspRead, dspWrite:

(reqCount: Integer; {requested number of bytes}

actCount: Integer; {actual number of bytes}

dataPtr: Ptr; {pointer to data buffer}

eom: Byte; {1 if end of message}

flush: Byte); {1 to send data now}

dspAttention:

(attnCode: Integer; {client attention code}

attnSize: Integer; {size of attention data}

attnData: Ptr; {pointer to attention data}

attnInterval: Byte; {reserved}

filler4: Byte); {filler for proper alignment}

dspOptions:

(sendBlocking: Integer; {send-blocking threshold}

sendTimer: Byte; {reserved}

rtmtTimer: Byte; {reserved}

badSeqMax: Byte; {retransmit advice threshold}

useCheckSum: Byte); {DDP checksum for packets}

dspNewCID:

(newCID: Integer); {new connection ID}

END;

Field descriptions

ioCompletion A pointer to a completion routine that you can provide; the Device
Manager calls your completion routine when it completes execution
of the PBControl function, if you execute PBControl asynchro-
nously and you specify a pointer to the routine as the value of this
field. Specify NIL for this field if you do not wish to provide a
completion routine. If you execute a function synchronously,
AppleTalk ignores the ioCompletion field. For information about
completion routines, see the chapter “Introduction to AppleTalk” in
this book.

ioResult The result of the function. If you call the routine asynchronously,
the Device Manager sets this field to 1 as soon as you call the
routine and it changes the field to the actual result code when the
routine completes execution.
5-40 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

ioCRefNum The driver reference number that is returned by the OpenDriver
function. You must specify this number every time you call the
.DSP driver.

csCode The command code for the ADSP routine to be executed. You must
fill in this field before calling the PBControl function. You use the
following constants as values for this field:

qStatus This field is reserved for use by ADSP.
ccbRefNum The reference number of the connection control block (CCB). ADSP

returns the CCB reference number in response to the dspInit
routine. You must specify this number as a parameter to every .DSP
driver routine you call subsequently.

The ASDSP Parameter Block 5

To open an ASDSP connection, the client application at each end must call the Device
Manager’s PBControl function with a command code that specifies the ASDSP open
routine (sdspOpen). This section describes the ASDSP parameter block whose pointer
you pass to PBControl to execute the sdspOpen routine. The ASDSP parameter block
contains fields that carry the input and output parameters associated with the function.
The SDSPParamBlock data type defines the ASDSP parameter block.

For a description of the fields that are common to both the DSP and ASDSP parameter
blocks and that are used in exactly the same way, see “The DSP Parameter Block”
beginning on page 5-38. For a description of the fields that are particular to the
sdspOpen routine, see “sdspOpen” beginning on page 5-54.

csCode command Action

dspInit Create a new connection end

dspRemove Remove a connection end

dspOpen Open a connection

dspClose Close a connection

dspCLInit Create a connection listener

dspCLRemove Remove a connection listener

dspCLListen Post a listener request

dspCLDeny Deny an open-connection request

dspStatus Get status of connection end

dspRead Read data from the connection

dspWrite Write data on the connection

dspAttention Send an attention message

dspOptions Set connection end options

dspReset Forward reset the connection

dspNewCID Generate a CID for a connection end
ADSP Reference 5-41

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
SDSPParamBlock =

PACKED RECORD

CASE INTEGER OF

1: (dspParamBlock: DSPParamBlock);

2: (qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {routine result}

ioNamePtr: StringPtr; {reserved}

ioVRefNum: Integer; {reserved}

ioCRefNum: Integer; {ASDSP driver refNum}

csCode: Integer; {ASDSP driver control code}

qStatus: LongInt; {reserved}

ccbRefNum: Integer; {connection end refNum}

secureParams: TRSecureParams); {dspOpenSecure}

END;

SDSPPBPtr = ^SDSPParamBlock;

Field descriptions

csCode The command code for the ASDSP routine to be executed. You must
fill in this field before calling the PBControl function. To call the
sdspOpen routine to open a secure connection, you specify the
constant sdspOpen as the value of this parameter.

secureParams A record of type TRSecureParams that contains the additional
parameters required to open a secure ASDSP session.

The TRSecureParams Record 5

The ASDSP parameter block is a variant parameter block that includes a field that is a
record of type TRSecureParams, which defines the additional parameters required for
an ASDSP session. This section shows the declaration for the TRSecureParams record.
The routine description “sdspOpen” beginning on page 5-54 includes the field definitions
for the TRSecureParams record.

The TRSecureParams record is defined as follows:

TYPE TRSecureParams =

PACKED RECORD

localCID: Integer; {local connection ID}

remoteCID: Integer; {remote connection ID}

remoteAddress: AddrBlock; {address of remote end}

filterAddress: AddrBlock; {address filter}

sendSeq: Longint; {local send sequence number}
5-42 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

sendWindow: Integer; {send window size}

recvSeq: LongInt; {receive sequence number}

attnSendSeq: LongInt; {attention send sequence number}

attnRecvSeq: LongInt; {attention receive sequence number}

ocMode: Byte; {open connection mode}

ocInterval: Byte; {open connection request retry }

{ interval}

ocMaximum: Byte; {open connection request retry }

{ maximum}

secure: Boolean; {for initiator, TRUE if session is

 { authenticated }

{for recipient, TRUE if session was }

{ authenticated}

sessionKey: AuthKeyPtr; {encryption key for session}

credentialsSize: LongInt; {length of credentials}

credentials: Ptr; {pointer to credentials}

workspace: Ptr; {pointer to workspace for }

{ connection. Align on even boundary }

{ and length = sdspWorkSize}

recipient: AuthIdentity; {identity of recipient or initiator }

{ if active mode}

issueTime: UTCTime; {time when credentials were issued}

expiry: UTCTime; {time when credentials expire}

initiator: RecordIDPtr; {RecordID of initiator returned in }

{ buffer pointed to by this field}

hasIntermediary: Boolean; {set if credentials has an }

{ intermediary}

intermediary: RecordIDPtr; {RecordID of intermediary returned }

{ here}

END;

Routines 5
This section describes the ADSP and ASDSP routines that you use to

■ establish and terminate an ADSP connection

■ establish a secure (ASDSP) connection

■ establish and terminate an ADSP connection listener

■ maintain an ADSP connection, including sending and receiving data across an ADSP
or ASDSP connection and enabling encryption of the data to be sent
ADSP Reference 5-43

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
You use the Device Manager’s PBControl function for all of the ADSP and ASDSP
routine calls.

FUNCTION PBControl (paramBlock: ParmBlkPtr;

async: Boolean): OSErr;

paramBlock
A pointer to the DSP parameter block that the PBControl function uses
for DSP routines.

async A Boolean that specifies whether the function is to execute synchronously
or asynchronously. Set the async parameter to TRUE to execute the
function asynchronously.

DESCRIPTION

All of the ADSP routines are implemented through a call to the PBControl function.
The PBControl function takes a pointer to a parameter block and a Boolean value that
specifies the mode in which the function is to be executed. You use the DSP parameter
block for all ADSP calls.

The parameter block includes a field, csCode, in which you specify the routine selector
for the particular routine to be executed; you must specify a value for this field. Each
ADSP routine may use different fields of the DSP parameter block for parameters
specific to that routine. The description of a function in this section includes the specific
parameters used for that function. See the section “The DSP Parameter Block” beginning
on page 5-38 for the complete DSP parameter block data structure.

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Establishing and Terminating an ADSP Connection 5

You can use the routines described in this section to

■ establish and initialize a connection end

■ set the values for parameters that control the behavior of a connection end

■ open an ADSP or ASDSP connection

■ assign an identification number to a connection end

■ close a connection end

■ eliminate a connection end

Arrow Meaning

→ Input

← Output

↔ Both
5-44 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

dspInit 5

The dspInit routine establishes a connection end, that is, it assigns a specific socket for
the ADSP connection end to use and initializes the variables that ADSP uses to maintain
the connection. You use the PBControl function to call the dspInit routine. See
“Routines” beginning on page 5-43 for a description of the PBControl function.

Parameter block

Field descriptions

csCode The routine selector, always equal to dspInit for this routine.
ccbRefNum The connection control block (CCB) reference number. The dspInit

routine returns the CCB reference number for this connection end
as the value of the ccbRefNum parameter. You must provide this
number in all subsequent calls to this connection end.

ccbPtr A pointer to the CCB that you allocated to be used by this connection
end. The CCB is 242 bytes in size and is described in “The ADSP
Connection Control Block Record” beginning on page 5-35. See also
“Creating and Using a Connection Control Block” on page 5-12.

userRoutine A pointer to a routine that ADSP is to call each time the connection
end receives an unsolicited connection event. Specify NIL for this
parameter if you do not want to supply a user routine. Connection
events and user routines are discussed in “Writing a User Routine
for Connection Events” beginning on page 5-26.

sendQSize The size in bytes of the send queue. A queue size of 600 bytes should
work well for most applications. If you are using ADSP to send a
continuous flow of data, a larger data buffer improves performance.
If your application is sending the user’s keystrokes, a smaller buffer
should be adequate. The constant minDSPQueueSize indicates the
minimum queue size that you can use.

sendQueue A pointer to the send queue that you allocated.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioCRefNum Integer The driver reference number.
→ csCode Integer Always dspInit for this function.
← ccbRefNum Integer The CCB reference number.
→ ccbPtr TPCCB A pointer to the CCB.
→ userRoutine ProcPtr A pointer to a routine to call on

connection events.
→ sendQSize Integer The size in bytes of the send queue.
→ sendQueue Ptr A pointer to the send queue.
→ recvQSize Ptr The size in bytes of the receive queue.
→ recvQueue Ptr A pointer to the receive queue.
→ attnPtr Ptr A pointer to the buffer for incoming

attention messages.
↔ localSocket Byte The DDP socket number for this

connection end.
ADSP Reference 5-45

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
recvQSize The size in bytes of the receive queue. A queue size of 600 bytes
should work well for most applications. If you are using ADSP to
receive a continuous flow of data, a larger data buffer improves
performance. If your application is receiving a user’s keystrokes, a
smaller buffer should be adequate. The constant minDSPQueueSize
indicates the minimum queue size that you can use.

recvQueue A pointer to the receive queue that you allocated.
attnPtr A pointer to the attention-message buffer that you allocated. The

attention-message buffer must be the size of the constant
attnBufSize.

localSocket The DDP socket number of the socket that you want ADSP to use
for this connection end. Specify 0 for this parameter to cause ADSP
to assign the socket; in this case, ADSP returns the socket number
when the dspInit routine completes execution.

DESCRIPTION

The dspInit routine creates and initializes a connection end. The dspInit routine
does not open the connection end or establish a connection with a remote connection
end; you must follow the dspInit routine with the dspOpen routine to perform
those tasks.

When you send bytes to a remote connection end, ADSP stores the bytes in a buffer
called the send queue. Until the remote connection end acknowledges their receipt, ADSP
keeps the bytes you sent in the send queue so that they are available to be retransmitted
if necessary. When the local connection end receives bytes, it stores them in a buffer
called the receive queue until you read them.

You must allocate memory for the send (sendQueue) and receive (recvQSize) queues
and for a buffer (attnPtr) that holds incoming attention messages. You must also
allocate a nonrelocatable block of memory (ccbPtr) for the CCB for this connection end.

SPECIAL CONSIDERATIONS

You must allocate nonrelocatable memory for the CCB, the send queue, the receive
queue, and the attention-message buffer, and ensure that the memory remains locked
until you explicitly remove the connection end by calling the dspRemove routine. Do
not write any data to this memory except by calling ADSP routines.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspInit routine from assembly language, call the _Control trap macro
with a value of dspInit in the csCode field of the parameter block.

RESULT CODES

noErr 0 No error
ddpSktErr –91 Error opening DDP socket
errDSPQueueSize –1274 Send or receive queue is too small
5-46 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

dspOptions 5

The dspOptions routine allows you to set values for several parameters that affect
the behavior of the local connection end. You use the PBControl function to call the
dspOptions routine. See “Routines” on page 5-43 for a description of the PBControl
function.

Parameter block

Field descriptions

csCode The routine selector, always equal to dspOptions for this routine.
ccbRefNum The connection control block (CCB) reference number that the

dspInit routine returned.
sendBlocking The maximum number of bytes that may accumulate in the send

queue before ADSP sends a packet to the remote connection end.
ADSP sends a packet before the maximum number of bytes
accumulates if the period specified by the send timer expires, if
you execute the dspWrite routine with the flush parameter set
to 1, or if a connection event requires that the local connection end
send an acknowledgment packet to the remote connection end.
You can set the sendBlocking parameter to any value from
1 byte to the maximum size of a packet (572 bytes). If you set the
sendBlocking parameter to 0, the current value for this parameter
is not changed. The default value for the sendBlocking parameter
is 16 bytes.

badSeqMax The maximum number of out-of-sequence data packets that the
local connection end can receive before requesting the remote
connection end to retransmit the missing data. Because a connection
end does not acknowledge the receipt of a data packet received out
of sequence, the retransmit timer of the remote connection end will
expire eventually and the connection end will retransmit the data.
The badSeqMax parameter allows you to cause the data to be
retransmitted before the retransmit timer of the remote connection
end has expired.
You can set the badSeqMax parameter to any value from 1 to 255.
If you set the badSeqMax parameter to 0, the current value for
this parameter is not changed. The default value for the badSeqMax
parameter is 3.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioCRefNum Integer The driver reference number.
→ csCode Integer Always dspOptions for this function.
→ ccbRefNum Integer The CCB reference number.
→ sendBlocking Integer The send-blocking threshold.
→ badSeqMax Byte The threshold to send retransmit advice.
→ useCheckSum Byte A DDP checksum flag.
ADSP Reference 5-47

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
useCheckSum A flag specifying whether DDP should compute a checksum and
include it in each packet that it sends to the remote connection end.
Set this parameter to 1 if you want DDP to use checksums or to 0
if you do not want DDP to use checksums. The default value for
useCheckSum is 0.
ADSP cannot include a checksum in a packet that has a short DDP
header—that is, a packet being sent over LocalTalk to a remote
socket that is on the same cable as the local socket. Note that the
useCheckSum parameter affects only whether ADSP includes a
checksum in a packet that it is sending. If ADSP receives a packet
that includes a checksum, it validates the checksum regardless of
the setting of the useCheckSum parameter.

DESCRIPTION

The dspOptions routine lets you set values that determine the behavior of a connection
end, such as the blocking factor, which is maximum number of bytes that should
accumulate in the connection end’s send queue before ADSP sends a packet to the
remote connection end, the maximum number of out-of-sequence packets received by
the connection end before ADSP sends a request for the missing packets, and whether or
not DDP should use checksums for all the packets that it transmits. You can set the
options for any established connection end, whether or not the connection end is open.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspOptions routine from assembly language, call the _Control trap
macro with a value of dspOptions in the csCode field of the parameter block.

RESULT CODES

SEE ALSO

Use the dspInit routine, described on page 5-45, to return the connection control block
(CCB) reference number.

dspOpen 5

The dspOpen routine opens a connection end. You can open a connection end in request
mode, passive mode, accept mode, or establish mode. You use the PBControl function
to call the dspOpen routine. See “Routines” on page 5-43 for a description of the
PBControl function.

noErr 0 No error
errRefNum –1280 Bad connection reference number
5-48 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

Parameter block

The use of parameters by the dspOpen routine depends on the mode in which the
routine is executed, as follows:

→ ioCompletion ProcPtr A pointer to completion routine.
← ioResult OSErr The function result.
→ ioCRefNum Integer The driver reference number.
→ csCode Integer Always dspOpen for this function.
→ ccbRefNum Integer The CCB reference number.
← localCID Integer The ID of this connection end.
↔ remoteCID Integer The ID of remote connection end.
↔ remoteAddress AddrBlock A remote internet address.
→ filterAddress AddrBlock A filter for open-connection requests.
↔ sendSeq LongInt The initial send sequence number.
↔ sendWindow Integer The initial size of remote receive queue.
→ recvSeq LongInt The initial receive sequence number.
↔ attnSendSeq LongInt The attention send sequence number.
→ attnRecvSeq LongInt The attention receive sequence number.
→ ocMode Byte The connection-opening mode.
→ ocInterval Byte The interval between open requests.
→ ocMaximum Byte The number of open-connection

request retries.

ocRequest ocPassive ocAccept ocEstablish

→ ioCompletion → ioCompletion → ioCompletion → ioCompletion

← ioResult ← ioResult ← ioResult ← ioResult

→ ioCRefNum → ioCRefNum → ioCRefNum → ioCRefNum

→ csCode → csCode → csCode → csCode

→ ccbRefNum → ccbRefNum → ccbRefNum → ccbRefNum

← localCID ← localCID ← localCID — localCID

← remoteCID ← remoteCID → remoteCID → remoteCID

→ remoteAddress ← remoteAddress → remoteAddress → remoteAddress

→ filterAddress → filterAddress — filterAddress — filterAddress

← sendSeq ← sendSeq → sendSeq → sendSeq

← sendWindow ← sendWindow → sendWindow → sendWindow

— recvSeq — recvSeq — recvSeq → recvSeq

← attnSendSeq ← attnSendSeq → attnSendSeq → attnSendSeq

— attnRecvSeq — attnRecvSeq — attnRecvSeq → attnRecvSeq

→ ocMode → ocMode → ocMode → ocMode

→ ocInterval → ocInterval → ocInterval — ocInterval

→ ocMaximum → ocMaximum → ocMaximum — ocMaximum

Key: → input ← output ↔ input and output — not used
ADSP Reference 5-49

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
Field descriptions

csCode The routine selector, always equal to dspOpen for this routine.
ccbRefNum The connection control block (CCB) reference number that was

returned by the dspInit routine for the connection end that you
want to use.

localCID The identification number of the local connection end. This number
is assigned by ADSP when you open the connection. ADSP includes
this number in every packet sent to a remote connection end. Before
you call the dspOpen routine in ocEstablish mode, you must
call the dspNewCID routine to cause ADSP to assign this value.

remoteCID The identification number of the remote connection end. This
parameter is returned by the dspOpen routine in the ocRequest
and ocPassive modes. A connection server must provide this
number to the dspOpen routine when the server executes the
routine in ocAccept mode; in this case, the connection server
obtains the remoteCID value from the dspCLListen routine. You
must provide the remoteCID value to the dspOpen routine when
you use the routine in ocEstablish mode.

remoteAddress The internet address of the remote socket with which you wish to
establish communications. This address consists of a 2-byte network
number, a 1-byte node ID, and a 1-byte socket number. You must
provide this parameter when you call the dspOpen routine in the
ocRequest or ocEstablish mode. This parameter is returned by
the dspOpen routine when you call the routine in the ocPassive
mode. When you call the dspOpen routine in the ocAccept mode,
you must use the value for the remoteAddress parameter that
was returned by the dspCLListen routine.

filterAddress The internet address of the socket from which you will accept a
connection request. The address consists of three fields: a 2-byte
network number, a 1-byte node ID, and a 1-byte socket number.
Specify 0 for any of these fields for which you wish to impose no
restrictions. If you specify a filter address of $00082500, for example,
the connection end accepts a connection request from any socket at
node $25 of network $0008. Set the filterAddress parameter
equal to the remoteAddress parameter to accept a connection
only with the socket to which you sent a connection request.
When you execute the dspOpen routine in the ocPassive mode,
you can receive a connection request from any ADSP connection
end on the internet. When you execute the dspOpen routine in the
ocRequest mode, your connection end can receive a connection
request acknowledgment from an address different from the one
you specified in the remoteAddress parameter only if the remote
address you specified was that of a connection listener. In either
case, you can use the filterAddress parameter to avoid acknowl-
edging unwanted connection requests.
When you execute the dspOpen routine in the ocAccept mode,
your connection listener has already received and decided to accept
the connection request. You can specify a filter address for a
5-50 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

connection listener with the dspCLListen routine. A connection
server can use the dspCLDeny routine to deny a connection request
that was accepted by its connection listener.
You cannot use the filter address when you execute the dspOpen
routine in ocEstablish mode.

sendSeq The sequence number of the first byte that the local connection end
will send to the remote connection end. ADSP uses this number to
coordinate communications and to check for errors. ADSP returns a
value for the sendSeq parameter when you execute the dspOpen
routine in the ocRequest or ocPassive mode. When you execute
the dspOpen routine in the ocAccept mode, you must specify
the value for the sendSeq parameter that was returned by the
dspCLListen routine. You must provide the value for this
parameter when you execute the dspOpen routine in the
ocEstablish mode.

sendWindow The sequence number of the last byte that the remote connection
end has buffer space to receive. ADSP uses this number to
coordinate communications and to check for errors. ADSP returns
a value for the sendWindow parameter when you execute the
dspOpen routine in the ocRequest or ocPassive mode. When
you execute the dspOpen routine in the ocAccept mode, you must
specify the value for the sendWindow parameter that was returned
by the dspCLListen routine. You must provide the value for this
parameter when you execute the dspOpen routine in the
ocEstablish mode.

recvSeq The sequence number of the next byte that the local connection
end expects to receive. ADSP uses this number to coordinate
communications and to check for errors. You must provide the
value for this parameter when you execute the dspOpen routine
in the ocEstablish mode. The dspOpen routine does not use
this parameter when you execute it in any other mode.

attnSendSeq The sequence number of the next attention packet that the local
connection end will transmit. ADSP uses this number to coordinate
communications and to check for errors. ADSP returns a value
for the attnSendSeq parameter when you execute the dspOpen
routine in the ocRequest or ocPassive mode. When you execute
the dspOpen routine in the ocAccept mode, you must specify
the value for the attnSendSeq parameter that was returned
by the dspCLListen routine. You must provide the value for
this parameter when you execute the dspOpen routine in the
ocEstablish mode.

attnRecvSeq The sequence number of the next attention packet that the local
connection end expects to receive. ADSP uses this number to ensure
that packets are delivered in the correct order and to check for
errors. You must provide a value for this parameter when you
execute the dspOpen routine in the ocEstablish mode. The
dspOpen routine does not use this parameter when you execute it
in any other mode.
ADSP Reference 5-51

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
ocMode The mode in which the dspOpen routine is to operate, as follows:

ocInterval The period between transmissions of open-connection requests.
If the remote connection end does not acknowledge or deny an
open-connection request, ADSP retransmits the request after a
time period specified by this parameter. The time period used by
ADSP is (ocInterval × 10) ticks, or (ocInterval/6) seconds.
For example, if you set the ocInterval parameter to 3, the time
period between retransmissions is 30 ticks (1/2 second). You can set
the ocInterval parameter to any value from 1 (1/6 second) to
180 (30 seconds). If you specify 0 for the ocInterval parameter,
ADSP uses the default value of 6 (1 second).
You must provide a value for the ocInterval parameter when
you execute the dspOpen routine in the ocRequest, ocPassive,
or ocAccept mode. The dspOpen routine does not use this
parameter when you execute it in the ocEstablish mode.

ocMaximum The maximum number of times to retransmit an open-connection
request before ADSP terminates execution of the dspOpen routine.
If you specify 0 for the ocMaximum parameter, ADSP uses the
default value of 3. If you specify 255 for the ocMaximum parameter,
ADSP retransmits the open-connection request indefinitely until the
remote connection end either acknowledges or denies the request.
You must provide a value for the ocMaximum parameter when you
execute the dspOpen routine in the ocRequest, ocPassive, or
ocAccept mode. The dspOpen routine does not use this parameter
when you execute it in the ocEstablish mode.

DESCRIPTION

The dspOpen routine opens a connection end. You set the ocMode field of the parameter
block to specify the opening mode that the dspOpen routine is to use. The dspOpen
routine puts a connection end into one of the four following opening modes:

■ The ocRequest mode, in which ADSP attempts to open a connection with the socket
at the internet address you specify as the remoteAddress parameter. If the socket
you specify as a remote address is a connection listener, it is possible that your
application will receive a connection acknowledgment and request from a different

Mode Value Meaning

ocRequest 1 ADSP attempts to open a connection
with the socket you specify.

ocPassive 2 The connection end waits to receive a
connection request.

ocAccept 3 The connection server accepts and
acknowledges receipt of a connection
request.

ocEstablish 4 ADSP considers the connection
established and open; you are
responsible for setting up and
synchronizing both connection ends.
5-52 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

address than the one to which you sent the open-connection request. You can use
the filterAddress parameter to restrict the addresses with which you will accept
a connection.
The dspOpen routine completes execution in the ocRequest mode when one of the
following occurs: ADSP establishes a connection, your connection end receives
a connection denial from the remote connection end, your connection end denies the
connection request returned by a connection listener, or ADSP cannot complete
the connection within the maximum number of retries that you specified with the
ocMaximum parameter.

■ The ocPassive mode, in which the connection end waits to receive an open-
connection request from a remote connection end. You can use the filterAddress
parameter to restrict the addresses from which you will accept a connection request.
The dspOpen routine completes execution in the ocPassive mode when ADSP
establishes a connection or when either connection end receives a connection denial.

■ The ocAccept mode, used by connection servers to complete an open-connection
dialog. When a connection server is informed by its connection listener that the
connection listener has received an open-connection request, the connection server
calls the dspInit routine to establish a connection end and then calls the dspOpen
routine in ocAccept mode to complete the connection. You must obtain the following
parameters from the dspCLListen routine and provide them to the dspOpen
routine: remoteAddress, remoteCID, sendSeq, sendWindow, and attnSendSeq.
Connection listeners and connection servers are described in “Creating and Using a
Connection Listener” beginning on page 5-22 and in “Establishing and Terminating an
ADSP Connection” beginning on page 5-44. See “Connection Listeners” on page 5-7
for a brief introduction to connection listeners.
The dspOpen routine completes execution in the ocAccept mode when ADSP
establishes a connection or when either connection end receives a connection denial.

■ The ocEstablish mode, in which ADSP considers the connection end established
and the connection state open. This mode is for use by clients that determine their
connection-opening parameters without using ADSP or the .DSP driver to do so.
You must first use the dspInit routine to establish a connection end and then
execute the dspNewCID routine to obtain an identification number (ID) for the
local connection end. You must then communicate with the remote connection end
to send it the local connection ID and to determine the values of the following
parameters: remoteAddress, remoteCID, sendSeq, sendWindow, recvSeq,
attnSendSeq, and attnRecvSeq. Only then can you execute the dspOpen routine
in the ocEstablish mode.
The dspOpen routine completes execution in the ocEstablish mode immediately.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspOpen routine from assembly language, call the _Control trap macro
with a value of dspOpen in the csCode field of the parameter block.
ADSP Reference 5-53

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
RESULT CODES

sdspOpen 5

The sdspOpen routine opens a secure (ASDSP) connection and causes ASDSP to
perform the challenge-and-reply process that authenticates the ASDSP clients at either
end of the connection. You use the PBControl function to call the sdspOpen routine.
See “Routines” on page 5-43 for a description of the PBControl function.

Parameter block

noErr 0 No error
errOpenDenied –1273 Open request denied by recipient
errOpening –1277 Attempt to open connection failed
errState –1278 Connection end must be closed
errAborted –1279 Request aborted by dspRemove or dspClose routine
errRefNum –1280 Bad connection reference number

ioCompletion ProcPtr A pointer to completion routine.
ioResult OSErr A result code.
ioCRefNum Integer The ADSP driver reference number.
csCode Integer Always sdspOpen for this function.
ccbRefNum Integer The CCB reference number for

connection end.
localCID Integer The ID of this connection end.
remoteCID Integer The ID of remote connection end.
remoteAddress AddrBlock A remote internet address.
filterAddress AddrBlock A filter for open connection end.
sendSeq LongInt The initial send sequence number.
sendWindow Integer The initial size of remote receive queue.
recvSeq LongInt Not used for ASDSP.
attnSendSeq LongInt The attention send sequence number.
attnRecvSeq LongInt Not used for ASDSP.
ocMode Byte The connection-opening mode.
ocInterval Byte The interval between open requests.
ocMaximum Byte The maximum number of retries of the

open-connection request.
secure Boolean A flag that determines if ASDSP

authenticates the connection.
sessionKey AuthKeyPtr A pointer to the session encryption key.
credentialsSize LongInt The length of credentials.
credentials Ptr A pointer to credentials.
workspace Ptr A pointer to workspace for connection.
recipient AuthIdentity The identity of recipient.
issueTime UTCTime The time when credentials were issued.
expiry UTCTime The time when credentials expire.
initiator RecordIDPtr A pointer to record ID of initiator.
hasIntermediary Boolean TRUE if credentials has an intermediary.
intermediary RecordIDPtr A pointer to record ID of intermediary.
5-54 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

The use of parameters by the sdspOpen routine depends on the mode in which the
routine is executed, as follows:

Field descriptions

csCode The routine selector, always equal to sdspOpen for this routine.
ccbRefNum This field is used in the same way that it is used for ADSP. See the

description of this field under “dspOpen” beginning on page 5-48.
localCID This field is used in the same way that it is used for ADSP. See the

description of this field under “dspOpen” beginning on page 5-48.

ocRequest ocPassive ocAccept

→ ioCompletion → ioCompletion → ioCompletion

← ioResult ← ioResult ← ioResult

→ ioCRefNum → ioCRefNum → ioCRefNum

→ csCode → csCode → csCode

→ ccbRefNum → ccbRefNum → ccbRefNum

← localCID ← localCID ← localCID

← remoteCID ← remoteCID → remoteCID

→ remoteAddress ← remoteAddress → remoteAddress

→ filterAddress → filterAddress — filterAddress

← sendSeq ← sendSeq → sendSeq

← sendWindow ← sendWindow → sendWindow

— recvSeq — recvSeq — recvSeq

← attnSendSeq ← attnSendSeq → attnSendSeq

— attnRecvSeq — attnRecvSeq — attnRecvSeq

→ ocMode → ocMode → ocMode

→ ocInterval → ocInterval → ocInterval

→ ocMaximum → ocMaximum → ocMaximum

→ secure ← secure ← secure

→ sessionKey ← sessionKey ← sessionKey

→ credentialsSize — credentialsSize — credentialsSize

→ credentials — credentials — credentials

→ workspace → workspace → workspace

— recipient → recipient → recipient

— issueTime ← issueTime ← issueTime

— expiry ← expiry ← expiry

— initiator ↔ initiator ↔ initiator

— hasIntermediary ← hasIntermediary ← hasIntermediary

— intermediary ↔ intermediary ↔ intermediary

Key: → input ← output ↔ input and output — not used
ADSP Reference 5-55

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
remoteCID The identification number of the remote connection end. This
parameter is returned by the sdspOpen routine in the ocRequest
and ocPassive modes. A connection server must provide this
number to the sdspOpen routine when the server executes the
routine in ocAccept mode; in this case, the connection server
obtains the remoteCID value from the dspCLListen routine.

remoteAddress The internet address of the remote socket with which you wish to
establish communications. This address consists of a 2-byte network
number, a 1-byte node ID, and a 1-byte socket number. You must
provide this parameter when you call the sdspOpen routine in
the ocRequest or ocAccept mode. When you call the sdspOpen
routine in the ocAccept mode, you must use the value for the
remoteAddress parameter that was returned by the dspCLListen
routine. This parameter is returned by the sdspOpen routine when
you call the routine in the ocPassive mode.

filterAddress This field is used in the same way that it is used for ADSP. See the
description of this field under “dspOpen” beginning on page 5-48.

sendSeq The sequence number of the first byte that the local connection end
will send to the remote connection end. ASDSP uses this number
to coordinate communications and to check for errors. ASDSP
returns a value for the sendSeq parameter when you execute
the sdspOpen routine in the ocRequest or ocPassive mode.
When you execute the sdspOpen routine in the ocAccept mode,
you must specify the value for the sendSeq parameter that was
returned by the dspCLListen routine.

sendWindow The sequence number of the last byte that the remote connection
end has buffer space to receive. ASDSP uses this number to
coordinate communications and to check for errors. ASDSP returns
a value for the sendWindow parameter when you execute the
sdspOpen routine in the ocRequest or ocPassive mode. When
you execute the sdspOpen routine in the ocAccept mode, you
must specify the value for the sendWindow parameter that was
returned by the dspCLListen routine.

recvSeq This field is not used by ASDSP.
attnSendSeq The sequence number of the next attention packet that the local

connection end will transmit. ASDSP uses this number to
coordinate communications and to check for errors. ASDSP returns
a value for the attnSendSeq parameter when you execute the
sdspOpen routine in the ocRequest or ocPassive mode. When
you execute the sdspOpen routine in the ocAccept mode, you
must specify the value for the attnSendSeq parameter that was
returned by the dspCLListen routine.

attnRecvSeq This field is not used by ASDSP.
5-56 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

ocMode The mode in which the sdspOpen routine is to operate, as follows:

ocInterval This field is used in the same way that it is used for ADSP. See the
description of this field under “dspOpen” beginning on page 5-48.

ocMaximum This field is used in the same way that it is used for ADSP. See the
description of this field under “dspOpen” beginning on page 5-48.

secure A flag that determines whether ASDSP authenticates the connection.
On input for the initiator end, you must set this value to TRUE if you
want ASDSP to authenticate the connection. You must provide a
value for the secure parameter when you execute the sdspOpen
routine in the ocRequest mode. ASDSP returns a value of TRUE for
this parameter to the recipient for all modes if the session was
authenticated.

sessionkey A pointer to a buffer containing the session key returned by
the Authentication Manager’s AuthGetCredentials or
AuthTradeProxyForCredentials function. The initiator
connection end must provide an input value for this parameter.
For the recipient connection end, ASDSP breaks out the session
key from the credentials block and returns a copy of the session key
as the value of this parameter. See the description of the data
structures that you need to allocate for ASDSP in the section
“Opening a Secure Connection” beginning on page 5-30 for more
information about the buffer.

credentialsSize
The size in bytes of credentials returned by the Authentica-
tion Manager’s AuthTradeProxyForCredentials or
AuthGetCredentials function.You must provide a value for the
credentialsSize parameter when you execute the sdspOpen
routine in the ocRequest mode. This parameter is not used for the
recipient end of the connection when you call the sdspOpen
routine in ocAccept mode or ocPassive mode.

credentials A pointer to the credentials for this session that the Authentica-
tion Manager’s AuthTradeProxyForCredentials or
AuthGetCredentials function returned when you called it.
Specify the size in bytes of the credential block pointed to by this
parameter as the value of the credentialsSize parameter when
you call the sdspOpen routine in the ocRequest mode. This
parameter is not used for the recipient end of the connection when
you call the sdspOpen routine in ocAccept mode or ocPassive
mode. See the chapter “Authentication Manager” in Inside
Macintosh: AOCE Application Programming Interfaces.

Mode Value Meaning

ocRequest 1 ADSP attempts to open a connection
with the remote socket you specify.

ocPassive 2 The connection end waits to receive
a connection request.

ocAccept 3 The connection server accepts and
acknowledges receipt of a connec-
tion request.
ADSP Reference 5-57

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
workspace A pointer to a buffer that you allocate as workspace for the
sdspOpen routine’s internal use. The memory for the buffer that
you allocate must be aligned on an even boundary and must be
equal in size to the sdspWorkSize constant, which is 2048 bytes.

recipient When the value of the ocMode parameter is ocAccept, you specify
the identity of the connection server as the value of the
recipient parameter. When the value of the ocMode parameter
is ocPassive, you specify the identity of the socket that is the
recipient of the request call as the value of the recipient
parameter. This field is not used when the ocMode parameter
value is ocRequest.

issueTime The time when the authentication credentials were issued. Together
with the expiry parameter value, the issueTime parameter
specifies the period of time for which the credentials are valid.
ASDSP extracts the value for the issueTime parameter from the
decrypted credentials. ASDSP returns this value when the mode is
ocPassive or ocAccept. The issueTime field is not used when
the ocMode parameter value is ocRequest.

expiry The time when the authentication credentials expire. Together with
the issueTime parameter value, the expiry parameter specifies
the duration for which the credentials are valid. ASDSP extracts the
value for the expiry parameter from the decrypted credentials. This
field is not used when the ocMode parameter value is ocRequest.

initiator A pointer to the record ID of the initiator that ASDSP returns when
the value of the ocMode parameter is ocAccept or ocPassive.
ASDSP extracts this value from the encrypted credentials. This field
is not used when the ocMode parameter value is ocRequest.

hasIntermediary
A flag that ASDSP sets if the credentials have an intermediary.
When this flag is set, a proxy was used; an intermediary used
the AuthTradeProxyForCredentials function to obtain the
credentials used in the authentication process. The sdspOpen
routine returns this value when the ocMode parameter value is
ocPassive or ocAccept.

intermediary A pointer to a buffer that is used to store the record ID of the inter-
mediary, if ASDSP finds an intermediary in the credentials. The
sdspOpen routine returns this value when the ocMode parameter
value is ocPassive or ocAccept.

DESCRIPTION

The sdspOpen routine opens a secure connection end if the identities of both the
initiator and the recipient connection ends can be proven in the authentication process.
You set the ocMode field of the parameter block to specify the opening mode that the
sdspOpen routine is to use. The sdspOpen routine puts a connection end into one of the
three following opening modes:

■ In the ocRequest mode, ASDSP attempts to open a connection with the socket at the
internet address you specify as the remoteAddress parameter.
5-58 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

■ In the ocPassive mode, the connection end waits to receive an open-connection
request from a remote connection end. You can use the filterAddress parameter
to restrict the addresses from which you will accept a connection request.

■ In the ocAccept mode, connection servers complete open-connection dialogs. When a
connection server is informed by its connection listener that the connection listener has
received an open-connection request, the connection server calls the dspInit routine
to establish a connection end and then calls the sdspOpen routine in ocAccept mode
to complete the connection. Connection listeners and connection servers are described
in “Creating and Using a Connection Listener” beginning on page 5-22 and in
“Establishing and Terminating an ADSP Connection” beginning on page 5-44. See
“Connection Listeners” on page 5-7 for a brief introduction to connection listeners.
Except for the authentication process, these three modes are used by ASDSP and
ADSP in the same way and their behavior is the same. See the description of how
these modes are used in “dspOpen” beginning on page 5-48.
If ASDSP cannot successfully complete the authentication process, ASDSP tears down
the connection and the sdspOpen calls made by both the initiator and the recipient
return a result code reporting the reason why the authentication process failed. For
the conditions that can cause the authentication process to fail, see the list of result
codes that follows.

ASSEMBLY-LANGUAGE INFORMATION

To execute the sdspOpen routine from assembly language, call the _Control trap
macro with a value of sdspOpen in the csCode field of the parameter block.

RESULT CODES

noErr 0 No error
errOpenDenied –1273 Open request denied by recipient
errFwdReset –1276 A forward reset caused ASDSP to terminate

the request
errOpening –1277 Attempt to open connection failed
errState –1278 Connection end is not open
errAborted –1279 Request aborted by dspRemove or

dspClose routine
errRefNum –1280 Bad connection reference number
kOCEUnsupportedCredentialsVersion –1543 Credentials version not supported
kOCEBadEncryptionMethod –1559 During the authentication process, the

ASDSP implementations could not agree on
an encryption method to be used (ASDSP
can support multiple stream encryption
methods. In Release 1, only RC4 and “no
encryption” are supported.)

kOCENoASDSPWorkSpace –1570 You passed NIL for the workspace
parameter

kOCEAuthenticationTrouble –1571 Authentication process failed
ADSP Reference 5-59

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
dspNewCID 5

The dspNewCID routine creates a connection ID to be used in setting up a connection.
You use the PBControl function to call the dspNewCID routine. See “Routines” on
page 5-43 for a description of the PBControl function.

Parameter block

Field descriptions

csCode The routine selector, always equal to dspNewCID for this routine.
ccbRefNum The connection control block (CCB) reference number that was

returned by the dspNewCID routine for the connection end that
you want to use.

newCID The connection-end ID that this routine returns. You must provide
this number to the client of the remote connection end so that
it can use it for the remoteCID parameter when it calls the
dspOpen routine.

DESCRIPTION

The dspNewCID routine causes ADSP to assign an ID to a connection end without
opening the connection end or attempting to establish a connection with a remote
connection end. Use this routine only if you implement your own protocol to establish
communication with a remote connection end. You must first use the dspInit routine
to establish a connection end. Next, you must call the dspNewCID routine to obtain a
connection-end ID. Then you must establish communication with a remote connection
end and pass the ID to the remote connection end. Finally, you must call the dspOpen
routine in ocEstablish mode to cause ADSP to open the connection.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspNewCID routine from assembly language, call the _Control trap
macro with a value of dspNewCID in the csCode field of the parameter block.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioCRefNum Integer The driver reference number.
→ csCode Integer Always dspNewCID for this function.
→ ccbRefNum Integer The CCB reference number.
← newCID Integer The ID of new connection.
5-60 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

RESULT CODES

SEE ALSO

To establish a connection, use the dspInit routine, described on page 5-45.

To obtain a connection-end ID, use the sdspOpen routine, described on page 5-54.

To open a connection in ocEstablish mode, use the dspOpen routine, described on
see page 5-48.

dspClose 5

The dspClose routine closes a connection end. You use the PBControl function
to call the dspClose routine. See “Routines” on page 5-43 for a description of the
PBControl function.

Parameter block

Field descriptions

csCode The routine selector, always equal to dspClose for this routine.
ccbRefNum The connection control block (CCB) reference number that was

returned by the dspNewCID routine for the connection end that
you want to close.

abort A value that specifies whether or not to send all of the data in the
send queue and all outstanding messages before closing the
connection end. If the abort parameter is nonzero, ADSP cancels
any outstanding requests to send data packets (such as the
dspAttention routine) and discards all data in the send queue.
If the abort parameter is 0, ADSP does not close the connection
end until all of the data in the send queue and all outstanding
attention messages have been sent and acknowledged.

noErr 0 No error
errState –1278 Connection is not closed
errRefNum –1280 Bad connection reference number

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioCRefNum Integer The driver reference number.
→ csCode Integer Always dspClose for this function.
→ ccbRefNum Integer The CCB reference number.
→ abort Byte A value specifying to abort send requests

if not 0.
ADSP Reference 5-61

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
DESCRIPTION

The dspClose routine closes the connection end. The connection end is still established;
that is, ADSP retains ownership of the CCB, send queue, receive queue, and attention-
message buffer. You can continue to read bytes from the receive queue after you have
called the dspClose routine. Use the dspRemove routine instead of the dspClose
routine if you are finished with reading bytes from the receive queue and want to release
the memory associated with the connection end.

SPECIAL CONSIDERATIONS

The dspClose routine does not return an error if you call it for a connection end that is
already closed.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspClose routine from assembly language, call the _Control trap
macro with a value of dspClose in the csCode field of the parameter block.

RESULT CODES

SEE ALSO

For information on how to remove a connection end and release the memory associated
with it, see the description of the dspRemove routine that follows.

dspRemove 5

The dspRemove routine closes any open connection and eliminates the connection
end, releasing all memory associated with it. You use the PBControl function to
call the dspRemove routine. See “Routines” on page 5-43 for a description of the
PBControl function.

Parameter block

noErr 0 No error
errRefNum –1280 Bad connection reference number

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioCRefNum Integer The driver reference number.
→ csCode Integer Always dspRemove for this function.
→ ccbRefNum Integer The CCB reference number.
→ abort Byte A value specifying to abort connection

if not 0.
5-62 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

Field descriptions

csCode The routine selector, always equal to dspRemove for this routine.
ccbRefNum The connection control block (CCB) reference number that was

returned by the dspNewCID routine for the connection end that
you want to remove.

abort A value that specifies whether or not to send all of the data in
the send queue and all outstanding messages before closing the
connection end. If the abort parameter is nonzero, ADSP cancels
any outstanding requests to send data packets (such as the
dspAttention routine) and discards all data in the send queue.
If the abort parameter is 0, ADSP does not close the connection
end until all of the data in the send queue and all outstanding
attention messages have been sent and acknowledged.

DESCRIPTION

The dspRemove routine closes the connection end whose connection control block
(CCB) you specify, and it eliminates that connection end; that is, ADSP no longer retains
control of the CCB, send queue, receive queue, and attention-message buffer. You cannot
continue to read bytes from the receive queue after you have called the dspRemove
routine. After you call the dspRemove routine, you can release all of the memory you
allocated for the connection end if you do not intend to reopen the connection end.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspRemove routine from assembly language, call the _Control trap
macro with a value of dspRemove in the csCode field of the parameter block.

RESULT CODES

Establishing and Terminating an ADSP Connection Listener 5

A connection listener is a special kind of connection end that listens for open-connection
requests from remote connection ends. Connection listeners are used by connection
servers—that is, programs that assign a socket for the local connection end only after
they receive a connection request from a remote connection end. A single connection
listener can receive connection requests from any number of remote connection ends.

You can use the routines in this section to

■ establish a connection listener

■ cause the connection listener to listen for a connection request

■ deny a connection request

■ close and eliminate a connection listener

noErr 0 No error
errRefNum –1280 Bad connection reference number
ADSP Reference 5-63

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
dspCLInit 5

The dspCLInit routine establishes and initializes a connection listener. You use the
PBControl function to call the dspCLInit routine. See “Routines” on page 5-43 for a
description of the PBControl function.

Parameter block

Field descriptions

csCode The routine selector, always equal to dspCLInit for this routine.
ccbRefNum The connection control block (CCB) reference number. The

dspCLInit routine returns this value.You must provide this
number in all subsequent dspCLListen and dspCLRemove
calls to this connection listener.

ccbPtr A pointer to the CCB that you allocated. The CCB is 242 bytes
in size.

localSocket The number of the DDP socket that you want ADSP to use for this
connection end. Specify 0 for this parameter to cause ADSP to
assign the socket; in this case, ADSP returns the socket number
when the dspCLInit routine completes execution.

DESCRIPTION

The dspCLInit routine establishes a connection listener; that is, it assigns a specific
socket for use by ADSP and initializes the variables that ADSP uses to maintain a
connection listener. The dspCLInit routine does not cause the connection listener
to listen for connection requests; you must follow the dspCLInit routine with the
dspCLListen routine to activate the connection listener.

You must allocate a block of nonrelocatable memory for a CCB before you call the
dspCLInit routine and pass a pointer to that CCB as the value of the ccbPtr
parameter. See the section “Creating and Using a Connection Control Block” on
page 5-12 and the section “The ADSP Connection Control Block Record” on page 5-35
for more information.

SPECIAL CONSIDERATIONS

The connection control block for which you allocate memory belongs to ADSP until you
explicitly remove the connection listener. You cannot release the memory for the CCB
until after you eliminate the connection listener.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioCRefNum Integer The driver reference number.
→ csCode Integer Always dspCLInit for this function.
← ccbRefNum Integer The CCB reference number.
→ ccbPtr TPCCB A pointer to CCB.
↔ localSocket Byte The local DDP socket number.
5-64 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspCLInit routine from assembly language, call the _Control trap
macro with a value of dspCLInit in the csCode field of the parameter block.

RESULT CODES

SEE ALSO

To establish a connection end that is not a connection listener, use the dspInit routine
described on page 5-45.

To eliminate a connection listener, use the dspCLRemove routine, described on page 5-68.

dspCLListen 5

The dspCLListen routine causes a connection listener to listen for connection requests.
You use the PBControl function to call the dspCLListen routine. See “Routines” on
page 5-43 for a description of the PBControl function.

Parameter block

Field descriptions

csCode The routine selector, always dspCLListen for this routine.
ccbRefNum The CCB reference number that the dspCLInit routine returned.
remoteCID The identification number of the remote connection end. You must

pass this value to the dspOpen routine when you open the connec-
tion or to the dspCLDeny routine when you deny the connection
request. The dspCLListen routine returns this number.

remoteAddress The internet address of the remote socket that sent a request to open
a connection. This address consists of a 2-byte network number, a
1-byte node ID, and a 1-byte socket number. You must pass this
value to the dspOpen routine when you open the connection or to
the dspCLDeny routine when you deny the connection request.

noErr 0 No error
ddpSktErr –91 Error opening socket

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioCRefNum Integer The driver reference number.
→ csCode Integer Always dspCLListen for this function.
→ ccbRefNum Integer The CCB reference number.
← remoteCID Integer The ID of the remote connection end.
← remoteAddress AddrBlock The remote internet address.
→ filterAddress AddrBlock A filter for open-connection requests.
← sendSeq LongInt The initial send sequence number.
← sendWindow Integer The initial size of the remote

receive queue.
← attnSendSeq LongInt The attention send sequence number.
ADSP Reference 5-65

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
filterAddress The internet address of the socket from which you will accept a
connection request. The address consists of three fields: a 2-byte
network number, a 1-byte node ID, and a 1-byte socket number.
Specify 0 for any of these fields for which you wish to impose no
restrictions. If you specify a filter address of $00082500, for example,
the connection listener accepts a connection request from any socket
at node $25 of network $0008.

sendSeq The sequence number of the first byte that the local connection end
will send to the remote connection end. ADSP uses this number to
coordinate communications and to check for errors. You must pass
this value to the dspOpen routine when you open the connection.

sendWindow The sequence number of the last byte that the remote connection
end has buffer space to receive. ADSP uses this number to
coordinate communications and to check for errors. You must pass
this value to the dspOpen routine when you open the connection.

attnSendSeq The sequence number of the next attention packet that the local
connection end will transmit. ADSP uses this number to ensure that
attention packets are delivered in the correct order and to check for
errors. You must pass this value to the dspOpen routine when you
open the connection.

DESCRIPTION

The dspCLListen routine initiates the connection listener. You must have already used
the dspCLInit routine to establish a connection listener before using the dspCLListen
routine. The dspCLListen routine is used only by connection servers.

When ADSP receives an open-connection request from a socket that satisfies the address
requirements of the filterAddress parameter, it returns values for the remoteCID,
remoteAddress, sendSeq, sendWindow, and attnSendSeq parameters and
completes execution of the dspCLListen routine. You must then either accept the
open-connection request by calling the dspOpen routine in the ocAccept mode or
deny the request by calling the dspCLDeny routine.

You can call the dspCLListen routine several times, specifying the same connection
listener. For example, if you wanted to accept connections from any or all of three
different addresses, you could call the dspCLListen routine three times with a different
value for the filterAddress parameter each time. Note that you must execute the
dspCLListen routine asynchronously to take advantage of this feature.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspCLListen routine from assembly language, call the _Control trap
macro with a value of dspCLListen in the csCode field of the parameter block.
5-66 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

RESULT CODES

dspCLDeny 5

The dspCLDeny routine denies a connection request from a remote connection end. You
use the PBControl function to call the dspCLDeny routine. See “Routines” on
page 5-43 for a description of the PBControl function.

Parameter block.

Field descriptions

csCode The routine selector, always dspCLDeny for this routine.
ccbRefNum The CCB reference number for the connection listener that received

the request. This is the CBB number that the dspCLInit routine
returned for the connection listener when you established a
connection listener.

remoteCID The ID of the remote connection end. The dspCLListen routine
returns this value.

remoteAddress The internet address of the remote connection end. The
dspCLListen routine returns this value.

DESCRIPTION

A connection server uses the dspCLDeny routine to inform a remote connection end that
its request to open a connection cannot be honored. If you want your connection listener
to continue to listen for further connection requests, you must call the dspCLListen
request again after you call dspCLDeny.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspCLDeny routine from assembly language, call the _Control trap
macro with a value of dspCLDeny in the csCode field of the parameter block.

noErr 0 No error
errState –1278 Not a connection listener
errAborted –1279 Request aborted by the dspRemove routine
errRefNum –1280 Bad connection reference number

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OsErr The function result.
→ ioCRefNum Integer The driver reference number.
→ csCode Integer Always dspCLDeny for this function.
→ ccbRefNum Integer The CCB reference number.
→ remoteCID Integer The ID of the remote connection end.
→ remoteAddress AddrBlock The remote internet address.
ADSP Reference 5-67

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
RESULT CODES

dspCLRemove 5

The dspCLRemove routine closes a connection end used as a connection listener. You use
the PBControl function to call the dspCLRemove routine. See “Routines” on page 5-43
for a description of the PBControl function.

Parameter block

Field descriptions

csCode The routine selector, always dspCLRemove for this routine.
ccbRefNum The connection control block (CCB) reference number that the

dspCLInit routine returned.
abort A value directing ADSP whether or not to cancel any outstanding

listen and deny requests. If this value is nonzero, ADSP cancels
outstanding dspCLListen and dspCLDeny requests. If this value
is 0, ADSP does not cancel these requests.

DESCRIPTION

The dspCLRemove routine closes a connection end used as a connection listener. After
you call the dspCLRemove routine, you can release the memory that you allocated for
the CCB if you do not intend to reopen the connection end.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspCLRemove routine from assembly language, call the _Control trap
macro with a value of dspCLRemove in the csCode field of the parameter block.

RESULT CODES

noErr 0 No error
errState –1278 Not a connection listener
errAborted –1279 Request aborted by the dspRemove routine
errRefNum –1280 Bad connection reference number

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioCRefNum Integer The driver reference number.
→ csCode Integer Always dspCLRemove for this function.
→ ccbRefNum Integer The CCB reference number.
→ abort Byte A value specifying to abort outstanding

requests if not 0.

noErr 0 No error
errRefNum –1280 Bad connection reference number
5-68 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

Maintaining an ADSP Connection and Using It to Exchange Data 5

Once you have established a connection end and opened a connection, you can send and
receive data over the connection. You can use the routines in this section to

■ determine the status of a connection

■ read bytes from the connection end’s receive queue

■ write bytes to the connection end’s send queue and transmit them to the remote
connection end

■ send an attention message to the remote connection end

■ discard all data that has been sent but not yet delivered, and reset the connection

dspStatus 5

The dspStatus routine returns the number of bytes waiting to be read and sent and the
amount of space available in the send and receive queues. You use the PBControl
function to call the dspStatus routine. See “Routines” on page 5-43 for a description of
the PBControl function.

Parameter block

Field descriptions

csCode The routine selector, always dspStatus for this routine.
ccbRefNum The connection control block (CCB) reference number that the

dspInit routine returned.
statusCCB A pointer to the CCB of the connection specified by the ccbRefNum

parameter value.
sendQPending The number of bytes of data that are in the send queue waiting to be

sent, including 1 byte for each logical end-of-message (EOM)
indicator in the send queue. (ADSP counts 1 byte for each EOM,
even though no actual data corresponds to the EOM indicator.) The
send queue contains all data that has been sent to ADSP for
transmission and that has not yet been acknowledged. Some of the
data in the send queue might have already been transmitted, but
ADSP retains it in the send queue until the remote connection end
acknowledges its receipt in case the data has to be retransmitted.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioCRefNum Integer The driver reference number.
→ csCode Integer Always dspStatus for this function.
→ ccbRefNum Integer The CCB reference number.
← statusCCB TPCCB A pointer to the CCB.
← sendQPending Integer Bytes waiting to be sent or acknowledged.
← sendQFree Integer Available send queue in bytes.
← recvQPending Integer Bytes waiting to be read from queue.
← recvQFree Integer Available receive queue in bytes.
ADSP Reference 5-69

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
sendQFree The number of bytes available in the send queue for additional data.
recvQPending The number of bytes in the receive queue, including 1 byte for each

EOM if the EOM bit is set in an ADSP packet header. The receive
queue contains all of the data that has been received by the
connection end but not yet read by the connection end’s client.

recvQFree The number of bytes available in the receive queue for
additional data.

DESCRIPTION

The dspStatus routine provides information about an open connection. In addition to
returning the number of bytes waiting to be read and sent and the space available in the
send and receive queues, this routine also returns a pointer to the CCB, which contains
information about the state of the connection end and about connection events received
by the connection end. For more information about the CCB, see “Creating and Using a
Connection Control Block” on page 5-12 and “The ADSP Connection Control Block
Record” beginning on page 5-35.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspStatus routine from assembly language, call the _Control trap
macro with a value of dspStatus in the csCode field of the parameter block.

RESULT CODES

dspRead 5

The dspRead routine reads data from a connection end’s receive queue and writes the
data to a buffer that you specify. You use the PBControl function to call the dspRead
routine. See “Routines” on page 5-43 for a description of the PBControl function.

Parameter block

noErr 0 No error
errRefNum –1280 Bad connection reference number

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioCRefNum Integer The driver reference number.
→ csCode Integer Always dspRead for this function.
→ ccbRefNum Integer The CCB reference number.
→ reqCount Integer The requested number of bytes.
← actCount Integer The actual number of bytes read.
→ dataPtr Ptr A pointer to the data buffer.
← eom Byte A flag indicating the end of message.
5-70 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

Field descriptions

csCode The routine selector, always dspRead for this routine.
ccbRefNum The connection control block (CCB) reference number that the

dspInit routine returned.
reqCount The number of bytes that ADSP is to read.
actCount The actual number of bytes that ADSP read.
dataPtr A pointer to the buffer into which ADSP is to place the data.
eom A flag indicating if the last byte that ADSP read was a logical

end-of-message indicator. If the last byte constitutes an EOM,
ADSP sets this parameter to 1. If not, it sets this parameter to 0.

DESCRIPTION

The dspRead routine reads data from an ADSP connection. You can continue to read
bytes as long as data is in the receive queue, even after you have called the dspClose
routine or after the remote connection end has called the dspClose or dspRemove
routine. The dspRead routine completes execution when it has read the number of
bytes you specify or when it encounters an end of message (that is, the last byte
of data in an ADSP packet that has the EOM bit set in the packet header).

You can call the dspStatus routine to determine the number of bytes remaining to be
read from the read queue, or you can continue to call the dspRead routine until the
actCount and eom parameters both return 0.

If either end closes the connection before you call the dspRead routine, the command
reads whatever data is available and returns the actual amount of data read in the
actCount parameter. If the connection is closed and there is no data in the receive
queue, the dspRead routine returns the noErr result code with the actCount
parameter set to 0 and the eom parameter set to 0.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspRead routine from assembly language, call the _Control trap macro
with a value of dspRead in the csCode field of the parameter block.

RESULT CODES

noErr 0 No error
errFwdReset –1275 Read terminated by forward reset
errState –1278 State isn’t open, closing, or closed
errAborted –1279 Request aborted by dspRemove or dspClose routine
errRefNum –1280 Bad connection reference number
ADSP Reference 5-71

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
dspWrite 5

The dspWrite routine writes bytes into a connection end’s send queue for ADSP or
ASDSP to transmit across a connection. When ASDSP is used and the encrypt bit is
set, ASDSP encrypts the data before sending it. You use the PBControl function to
call the dspWrite routine. See “Routines” on page 5-43 for a description of the
PBControl function.

Parameter block

Field descriptions

csCode The routine selector, always dspWrite for this routine.
ccbRefNum The connection control block (CCB) reference number that the

dspInit routine returned.
reqCount The number of bytes to write.
actCount The actual number of bytes written to the send queue.
dataPtr A pointer to the buffer from which ADSP or ASDSP should read the

data that is to be sent.
eom For ADSP, a flag indicating if the last byte written to the send queue

was a logical end-of-message indicator. If the last byte constitutes
an EOM, you set this parameter to 1. If not, you set this parameter
to 0. The high-order bits of the eom parameter are reserved for use
by ADSP; you must leave these bits equal to 0.
For ASDSP, if this is a secure connection, this field constitutes two
single-bit flags instead of a zero/nonzero byte. If set to 1, bit 0
indicates the end of message; if set to 1, bit 1 turns on encryption.
Note that ASDSP checks this flag on the first write of the connection
and the first write following a write for which the end-of-message
flag (bit 0 of the eom field) is set.

flush A flag indicting whether or not ADSP or ASDSP should immediately
send the data in the send queue to the remote connection. Set flush
to 1 to cause ADSP or ASDSP to immediately transmit any data in the
send queue that has not already been transmitted. Set flush to 0 to

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioCRefNum Integer The driver reference number.
→ csCode Integer Always dspWrite for this function.
→ ccbRefNum Integer The CCB reference number.
→ reqCount Integer The requested number of bytes.
← actCount Integer The actual number of bytes written.
→ dataPtr Ptr A pointer to the data buffer.
→ eom Byte For ADSP: a flag indicating end of message.

For ASDSP: a flag indicating end of
message or encryption.

→ flush Byte A flag indicating whether to send
buffered data.
5-72 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

allow data to accumulate in the send queue until another condition
occurs that causes data to be transmitted. The high-order bits of the
flush parameter are reserved for use by ADSP or ASDSP; you must
leave these bits equal to 0.

DESCRIPTION

The dspWrite routine sends data across an ADSP or ASDSP connection. The send
queue contains all data that has been sent to ADSP or ASDSP for transmission and that
has not yet been acknowledged. Some of the data in the send queue might have already
been transmitted, but ADSP or ASDSP retains it in the send queue until the remote
connection end acknowledges its receipt in case the data has to be retransmitted. The
dspWrite routine completes execution when it has copied all of the data from the data
buffer into the send queue.

ADSP or ASDSP transmits the data in the send queue when the remote connection end
has room to accept the data and one of the following conditions occurs:

■ You call the dspWrite routine with the flush parameter set to a nonzero number.

■ The number of bytes in the send queue equals or exceeds the blocking factor. (You use
the sendBlocking parameter to the dspOptions routine to set the blocking factor.)

■ The send timer expires.

■ A connection event requires that the local connection end send an acknowledgment
packet to the remote connection end.

For an ADSP dspWrite call, you can set the reqCount parameter to 0 and the eom
parameter to 1 to indicate that the last byte you sent the previous time you called the
dspWrite routine was the end of the message. You can set the reqCount parameter to
a value larger than the size of the send queue. If you do so, the dspWrite routine writes
as much data as it can into the send queue, sends the data and waits for acknowledg-
ment, and then writes more data into the send queue until it has written the amount of
data you requested. In this case, the routine does not complete execution until it has
finished writing all of the data into the send queue.

For an ASDSP dspWrite call, you can set the encrypt bit of the eom field (bit 1) of the
DSP parameter block. Note that ASDSP checks this flag on the first write of the connec-
tion or the first write following a write for which the end-of-message flag (bit 0 of the
eom field) is set. You can set the end-of-message bit (bit 0) of the eom field to indicate the
end of the message.

■ To set the encrypt bit, you use the dspEncryptMask mask or the
dspEncryptBit constant.

■ To set the end-of-message bit, you use the dspEOMMask mask or the
dspEOMBit constant.

Set the flush parameter to 1 to cause ADSP to immediately transmit any data in the
send queue that has not already been transmitted. Set the flush parameter to 0 to allow
data to accumulate in the send queue until another condition occurs that causes data to
be transmitted.
ADSP Reference 5-73

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
If you want to encrypt all messages, you can simply set the encrypt bit on all calls to the
dspWrite function.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspWrite routine from assembly language, call the _Control trap
macro with a value of dspWrite in the csCode field of the parameter block.

RESULT CODES

dspAttention 5

The dspAttention routine sends an attention code and an attention message to the
remote connection end. You use the PBControl function to call the dspAttention
routine. See “Routines” on page 5-43 for a description of the PBControl function.

Parameter block

Field descriptions

csCode The routine selector, always dspAttention for this routine.
ccbRefNum The connection control block (CCB) reference number that the

dspInit routine returned.
attnCode The 2-byte attention code that you wish to send to the remote

connection end. You can use any value from $0000 through $EFFF
for the attention code. The values $F000 through $FFFF are reserved
for use by ADSP.

attnSize The size in bytes of the attention message you wish to send.
attnData A pointer to the attention message. The attention message can be

any size from 0 through 570 bytes. There are no restrictions on the
content of the attention message.

noErr 0 No error
errState –1278 Connection is not open
errAborted –1279 Request aborted by dspRemove or dspClose routine
errRefNum –1280 Bad connection reference number

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioCRefNum Integer The driver reference number.
→ csCode Integer Always dspAttention for this function.
→ ccbRefNum Integer The CCB reference number.
→ attnCode Integer The client attention code.
→ attnSize Integer The size of attention data in bytes.
→ attnData Ptr A pointer to attention data.
5-74 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

DESCRIPTION

The dspAttention routine sends an attention code and message. Attention codes and
attention messages can have any meaning that your application and the application at
the remote connection end both recognize. The purpose of attention codes and messages
is to allow clients of ADSP to send messages outside the normal data stream.

For example, if a connection end on a mainframe computer is connected to several
connection ends in Macintosh computers being used as remote terminals, the mainframe
computer might wish to inform the remote terminals that all connections will be
terminated in ten minutes. The mainframe application could send an attention message
to each of the remote terminals informing them of this fact, and the terminal emulation
programs in the Macintosh computers could then display an alert message on the screen
so that the users could prepare to shut down.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspAttention routine from assembly language, call the _Control trap
macro with a value of dspAttention in the csCode field of the parameter block.

RESULT CODES

dspReset 5

The dspReset routine clears all the data associated with the connection that the remote
connection client has not already read and resynchronizes the connection. You use the
PBControl function to call the dspReset routine. See “Routines” on page 5-43 for a
description of the PBControl function.

Parameter block

Field descriptions

csCode The routine selector, always dspReset for this routine.
ccbRefNum The connection control block (CCB) reference number that the

dspInit routine returned.

noErr 0 No error
errAttention –1276 Attention message too long
errState –1278 Connection is not open
errAborted –1279 Request aborted by dspRemove or dspClose routine
errRefNum –1280 Bad connection reference number

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioCRefNum Integer The driver reference number.
→ csCode Integer Always dspReset for this routine.
→ ccbRefNum Integer The CCB reference number.
ADSP Reference 5-75

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
DESCRIPTION

The dspReset routine causes ADSP to discard all data in the send queue, all data in
transit to the remote connection end, and all data in the remote connection end’s receive
queue that the client has not yet read. This process is known as a forward reset. ADSP
then resynchronizes the connection. You can determine that your connection end has
received a forward reset and has discarded all data in the receive queue by checking the
eFwdReset flag in the userFlags field of the CCB. For information on the CCB, see
“Connections, Connection Ends, and Connection States” beginning on page 5-6.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspReset routine from assembly language, call the _Control trap
macro with a value of dspReset in the csCode field of the parameter block.

RESULT CODES

noErr 0 No error
errState –1278 Connection is not open
errAborted –1279 Request aborted by dspRemove or dspClose routine
errRefNum –1280 Bad connection reference number
5-76 ADSP Reference

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

Summary of ADSP 5

Pascal Summary 5

Constants 5

CONST

{ADSP routine selectors}

dspInit = 255; {create a new connection end}

dspRemove = 254; {remove a connection end}

dspOpen = 253; {open a connection}

dspClose = 252; {close a connection}

dspCLInit = 251; {create a connection listener}

dspCLRemove = 250; {remove a connection listener}

dspCLListen = 249; {post a listener request}

dspCLDeny = 248; {deny an open-connection request}

dspStatus = 247; {get status of connection end}

dspRead = 246; {read data from the connection}

dspWrite = 245; {write data on the connection}

dspAttention = 244; {send an attention message}

dspOptions = 243; {set connection end options}

dspReset = 242; {forward reset the connection}

dspNewCID = 241; {generate a CID for a }

{ connection end}

sdspOpen = 229; {open a secure connection}

{ADSP connection-opening modes}

ocRequest = 1; {request a connection with a }

{ remote connection end}

ocPassive = 2; {wait for a connection request }

{ from remote connection end}

ocAccept = 3; {accept request as delivered by }

{ listener}

ocEstablish = 4; {consider connection to be open}

{ADSP connection end states}

sListening = 1; {for connection listeners}

sPassive = 2; {waiting for a connection }

{ request from remote }

{ connection end}
Summary of ADSP 5-77

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
sOpening = 3; {requesting a connection }

{ with remote connection end}

sOpen = 4; {connection is open}

sClosing = 5; {connection is being torn down}

sClosed = 6; {connection end state is closed}

{ASDSP end-of-message and encrypt flags and masks}

dspEncryptBit = 1; {set to encrypt message}

dspEOMBit = 0; {set if EOM at end of write}

dspEOMMask = $1; {mask for setting the EOM bit}

dspEncryptMask = $2; {mask for setting the encrypt bit}

{ADSP client event flags}

eClosed = $80; {received connection-closed event}

eTearDown = $40; {closed due to broken connection}

eAttention = $20; {received attention message}

eFwdReset = $10; {received forward reset event}

{miscellaneous ADSP constants}

attnBufSize = 570; {size of client attention buffer}

minDSPQueueSize = 100; {minimum size of receive or }

{ send queue}

{driver control ioResults}

errRefNum = -1280; {bad connection refNum}

errAborted = -1279; {control call was aborted}

errState = -1278; {bad connection state for this }

{ operation}

errOpening = -1277; {open connection request failed}

errAttention = -1276; {attention message too long}

errFwdReset = -1275; {read terminated by forward reset}

errDSPQueueSize = -1274; {DSP read/write queue too small}

errOpenDenied = -1273; {open connection request denied}

Data Types 5

The ADSP Connection Control Block Record

TYPE TRCCB =

PACKED RECORD

ccbLink: TPCCB; {link to next CCB}

refNum: Integer; {reference number}

state: Integer; {state of the connection end}
5-78 Summary of ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

userFlags: Byte; {user flags for connection}

localSocket: Byte; {local socket number}

remoteAddress: AddrBlock; {remote end internet address}

attnCode: Integer; {attention code received}

attnSize: Integer; {size of attention data}

attnPtr: Ptr; {pointer to attention data}

reserved: PACKED ARRAY[1..220] OF Byte;

{reserved for use by ADSP}

END;

The Address Block Record

TYPE AddrBlock =

PACKED RECORD

aNet: Integer; {network number}

aNode: Byte; {node ID}

aSocket: Byte; {socket number}

END;

The DSP Parameter Block

TYPE DSPParamBlock =

PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {reserved}

ioVRefNum: Integer; {reserved}

ioCRefNum: Integer; {driver reference number}

csCode: Integer; {primary command code}

qStatus: LongInt; {reserved}

ccbRefNum: Integer; {CCB reference number}

CASE Integer OF

dspInit, dspCLInit:

(ccbPtr: TPCCB; {pointer to CCB}

userRoutine: ProcPtr; {pointer to user routine}

sendQSize: Integer; {size of send queue}

sendQueue: Ptr; {pointer to send queue}

recvQSize: Integer; {size of receive queue}

recvQueue: Ptr; {pointer to receive queue}

attnPtr: Ptr; {pointer to attention-message buffer}
Summary of ADSP 5-79

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
localSocket: Byte; {local socket number}

filler1: Byte); {filler for proper alignment}

dspOpen, dspCLListen, dspCLDeny:

(localCID: Integer; {local connection ID}

remoteCID: Integer; {remote connection ID}

remoteAddress: AddrBlock; {remote internet address}

filterAddress: AddrBlock; {address filter}

sendSeq: LongInt; {send sequence number}

sendWindow: Integer; {size of remote buffer}

recvSeq: LongInt; {receive sequence number}

attnSendSeq: LongInt; {attention send seq number}

attnRecvSeq: LongInt; {attention receive seq num}

ocMode: Byte; {connection-opening mode}

ocInterval: Byte; {interval bet. open requests}

ocMaximum: Byte; {retries of open-conn req}

filler2: Byte); {filler for proper alignment}

dspClose, dspRemove:

(abort: Byte; {abort send requests}

filler3: Byte); {filler for proper alignment}

dspStatus:

(statusCCB: TPCCB; {pointer to CCB}

sendQPending: Integer; {bytes waiting in send queue}

sendQFree: Integer; {available send-queue buffer}

recvQPending: Integer; {bytes in receive queue}

recvQFree: Integer); {avail receive-queue buffer}

dspRead, dspWrite:

(reqCount: Integer; {requested number of bytes}

actCount: Integer; {actual number of bytes}

dataPtr: Ptr; {pointer to data buffer}

eom: Byte; {1 if end of message}

flush: Byte); {1 to send data now}

dspAttention:

(attnCode: Integer; {client attention code}

attnSize: Integer; {size of attention data}

attnData: Ptr; {pointer to attention data}

attnInterval: Byte; {reserved}

filler4: Byte); {filler for proper alignment}

dspOptions:

(sendBlocking: Integer; {send-blocking threshold}

sendTimer: Byte; {reserved}

rtmtTimer: Byte; {reserved}

badSeqMax: Byte; {retransmit advice threshold}

useCheckSum: Byte); {DDP checksum for packets}
5-80 Summary of ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

dspNewCID:

(newCID: Integer); {new connection ID}

END;

DSPPBPtr = ^DSPParamBlock;

The ASDSP Parameter Block

TYPE SDSPParamBlock =

PACKED RECORD

CASE INTEGER OF

1: (dspParamBlock: DSPParamBlock);

2: (qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {reserved}

ioVRefNum: Integer; {reserved}

ioCRefNum: Integer; {adsp driver refNum}

csCode: Integer; {asdsp driver control code}

qStatus: Longint; {reserved}

ccbRefNum: Integer; {connection end refNum}

secureParams: TRSecureParams);

{parameters for dspOpenSecure}

END;

SDSPPBPtr = ^SDSPParamBlock;

The TRSecureParams Record

TYPE TRSecureParams =

PACKED RECORD

localCID: Integer; {local connection ID}

remoteCID: Integer; {remote connection ID}

remoteAddress: AddrBlock; {address of remote end}

filterAddress: AddrBlock; {address filter}

sendSeq: Longint; {local send sequence number}

sendWindow: Integer; {send window size}

recvSeq: Longint; {receive sequence number}

attnSendSeq: Longint; {attention send sequence number}

attnRecvSeq: Longint; {attention receive sequence number}

ocMode: Byte; {open connection mode}
Summary of ADSP 5-81

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
ocInterval: Byte; {open connection request }

{ retry interval}

ocMaximum: Byte; {open connection request }

{ retry maximum}

secure: Boolean; {for initiator, TRUE if session is }

{ authenticated}

{for recipient, TRUE if session was }

{ authenticated}

sessionKey: AuthKeyPtr; {encryption key for session}

credentialsSize: Longint; {length of credentials}

credentials: Ptr; {pointer to credentials}

workspace: Ptr; {pointer to workspace for }

{ connection. Align on }

{ even boundary and }

{ length = sdspWorkSize}

recipient: AuthIdentity; {identity of recipient }

{ or initiator if active mode}

issueTime: UTCTime; {time when credentials were issued}

expiry: UTCTime; {time when credentials expire}

initiator: RecordIDPtr; {RecordID of initiator returned in }

{ the buffer pointed to by this field}

hasIntermediary: Boolean; {set if credentials has an }

{ intermediary}

intermediary: RecordIDPtr; {Record ID of intermediary returned}

END;

C Summary 5

Constants 5

/*workspace used internally by ASDSP for the sdspOpen call*/

#define sdspWorkSize 2048 /*size of ASDSP workspace*/

enum{ /*ADSP routine selectors*/

dspInit = 255, /*create a new connection end*/

dspRemove = 254, /*remove a connection end*/

dspOpen = 253, /*open a connection*/

dspClose = 252, /*close a connection*/

dspCLInit = 251, /*create a connection listener*/

dspCLRemove = 250, /*remove a connection listener*/

dspCLListen = 249, /*post a listener request*/
5-82 Summary of ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

dspCLDeny = 248, /*an open-connection request*/

dspStatus = 247, /*get status of connection end*/

dspRead = 246, /*read data from the connection*/

dspWrite = 245, /*write data on the connection*/

dspAttention = 244, /*send an attention message*/

dspOptions = 243, /*set connection end options*/

dspReset = 242, /*forward reset the connection*/

dspNewCID = 241, /*generate a CID for a */

/* connection end*/

sdspOpen = 229; /*open a secure connection*/

enum { /*ADSP connection-opening modes*/

ocRequest = 1, /*request a connection with a */

/* remote connection end*/

ocPassive = 2, /*wait for a connection request */

/* from remote connection end*/

ocAccept = 3, /*accept request as delivered by */

 /* listener*/

ocEstablish = 4}; /*consider connection to be */

/* open*/

enum { /*ADSP connection end states*/

sListening = 1, /*for connection listeners*/

sPassive = 2, /*waiting for a connection */

 /* request from remote */

/* connection end*/

sOpening = 3, /*requesting a connection */

/* with remote connection end*/

sOpen = 4, /*connection is open*/

sClosing = 5, /*connection is being torn down*/

sClosed = 6}; /*connection end state */

/* is closed*/

/*ASDSP end-of-message and encrypt flags and masks*/

enum {

dspEOMBit = 0, /*set if EOM at end of write*/

dspEncryptBit = 1}; /*set to encrypt message*/

enum {

dspEOMMask = 1<<dspEOMBit,

dspEncryptMask = 1<<dspEncryptBit

};
Summary of ADSP 5-83

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
enum { /*ADSP client event flags*/

eClosed = $80, /*received connection-closed */

/* event*/

eTearDown = $40, /*closed due to broken */

/* connection*/

eAttention = $20, /*received attention message*/

eFwdReset = $10}; /*received forward reset event*/

enum { /*miscellaneous ADSP constants*/

attnBufSize = 570, /*size of client attention */

/* buffer*/

minDSPQueueSize = 100}; /*minimum size of receive or */

/* send queue*/

enum { /*driver control ioResults*/

errRefNum = -1280, /*bad connection refNum*/

errAborted = -1279, /*control call was aborted*/

errState = -1278, /*bad connection state for this */

/* operation*/

errOpening = -1277, /*open connection request */

/* failed*/

errAttention = -1276, /*attention message too long*/

errFwdReset = -1275, /*read terminated */

/* by forward reset*/

errDSPQueueSize = -1274, /*DSP read/write queue */

/* too small*/

errOpenDenied = -1273}; /*open connection request */

/* denied*/

Data Types 5

The ADSP Connection Control Block Record

struct TRCCB {

unsigned char *ccbLink; /*link to next CCB*/

unsigned short refNum; /*reference number*/

unsigned short state; /*state of the connection end*/

unsigned char userFlags; /*user flags for connection*/

unsigned char localSocket; /*local socket number*/

AddrBlock remoteAddress; /*remote end internet address*/

unsigned short attnCode; /*attention code received*/

unsigned short attnSize; /*size of attention data*/
5-84 Summary of ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

unsigned char *attnPtr; /*pointer to attention data*/

unsigned char reserved[220]; /*reserved*/

};

typedef struct TRCCB TRCCB;

typedef TRCCB *TPCCB;

The Address Block Record

struct AddrBlock {

short aNet; /*network number*/

unsigned char aNode; /*node ID*/

unsigned char aSocket; /*socket number*/

};

typedef struct AddrBlock AddrBlock;

Parameter Block for dspInit and dspCLInit

struct TRinitParams {

TPCCB ccbPtr; /*pointer to connection control block*/

ProcPtr userRoutine; /*client routine to call on event*/

unsigned short sendQSize; /*size of send queue (0..64K bytes)*/

unsigned char *sendQueue; /*client passed send queue buffer*/

unsigned short recvQSize; /*size of receive queue */

/* (0..64K bytes)*/

unsigned char *recvQueue; /*client passed receive queue buffer*/

unsigned char *attnPtr; /*client passed receive attention */

/* buffer*/

unsigned char localSocket; /*local socket number*/

};

typedef struct TRinitParams TRinitParams;

Parameter Block for dspOpen, dspCLListen, and dspCLDeny

struct TRopenParams {

unsigned short localCID; /*local connection ID*/

unsigned short remoteCID; /*remote connection ID*/

AddrBlock remoteAddress; /*address of remote end*/

AddrBlock filterAddress; /*address filter*/

unsigned long sendSeq; /*local send sequence number*/

unsigned short sendWindow; /*send window size*/

unsigned long recvSeq; /*receive sequence number*/
Summary of ADSP 5-85

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
unsigned long attnSendSeq; /*attention send sequence number*/

unsigned long attnRecvSeq; /*attention receive sequence */

/* number*/

unsigned char ocMode; /*open connection mode*/

unsigned char ocInterval; /*open connection request retry */

/* interval*/

unsigned char ocMaximum; /*open connection request retry */

}; /* maximum*/

typedef struct TRopenParams TRopenParams;

Parameter Block for dspClose and dspRemove

struct TRcloseParams {

unsigned char abort; /*abort connection immediately if nonzero*/

};

typedef struct TRcloseParams TRcloseParams;

Parameter Block for dspStatus

struct TRstatusParams {

TPCCB ccbPtr; /*pointer to ccb*/

unsigned short sendQPending; /*pending bytes in send queue*/

unsigned short sendQFree; /*available buffer space in send */

/* queue*/

unsigned short recvQPending; /*pending bytes in receive queue*/

unsigned short recvQFree; /*available buffer space in */

}; /* receive queue*/

typedef struct TRstatusParams TRstatusParams;

Parameter Block for dspRead and dspWrite

struct TRioParams {

unsigned short reqCount; /*requested number of bytes*/

unsigned short actCount; /*actual number of bytes*/

unsigned char *dataPtr; /*pointer to data buffer*/

unsigned char eom; /*indicates logical end of message*/

unsigned char flush; /*send data now*/

};

typedef struct TRioParams TRioParams;
5-86 Summary of ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

Parameter Block for dspAttention

struct TRattnParams {

unsigned short attnCode; /*client attention code*/

unsigned short attnSize; /*size of attention data*/

unsigned char *attnData; /*pointer to attention data*/

unsigned char attnInterval; /*retransmit timer in 10-tick */

/* intervals*/

};

typedef struct TRattnParams TRattnParams;

Parameter Block for dspOptions

struct TRoptionParams {

unsigned short sendBlocking; /*quantum for data packets*/

unsigned char sendTimer; /*send timer in 10-tick intervals*/

unsigned char rtmtTimer; /*retransmit timer in 10-tick */

/* intervals*/

unsigned char badSeqMax; /*threshold for sending retransmit */

/* advice*/

unsigned char useCheckSum; /*use ddp packet checksum*/

};

typedef struct TRoptionParams TRoptionParams;

Parameter Block for dspNewCID

struct TRnewcidParams {

unsigned short newcid; /*new connection ID returned*/

};

typedef struct TRnewcidParams TRnewcidParams;

The DSP Parameter Block

struct DSPParamBlock {

struct QElem *qLink; /*reserved*/

short qType; /*reserved*/

short ioTrap; /*reserved*/

Ptr ioCmdAddr; /*reserved*/

ProcPtr ioCompletion; /*pointer to completion routine*/

OSErr ioResult; /*routine result*/

char *ioNamePtr; /*reserved*/

short ioVRefNum; /*reserved*/
Summary of ADSP 5-87

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
short ioCRefNum; /*ADSP driver refNum*/

short csCode; /*ADSP driver control code*/

long qStatus; /*reserved*/

short ccbRefNum;

union{

TRinitParams initParams; /*dspInit, dspCLInit*/

TRopenParams openParams; /*dspOpen, dspCLListen, dspCLDeny*/

TRcloseParams closeParams; /*dspClose, dspRemove*/

TRioParams ioParams; /*dspRead, dspWrite*/

TRattnParams attnParams; /*dspAttention*/

TRstatusParams statusParams; /*dspStatus*/

TRoptionParams optionParams; /*dspOptions*/

TRnewcidParams newCIDParams; /*dspNewCID*/

} u;

};

typedef struct DSPParamBlock DSPParamBlock;

typedef DSPParamBlock *DSPPBPtr;

The ASDSP Parameter Block

struct TRSecureParams {

unsigned short localCID; /*local connection ID*/

unsigned short remoteCID; /*remote connection ID*/

AddrBlock remoteAddress; /*address of remote end*/

AddrBlock filterAddress; /*address filter*/

unsigned long sendSeq; /*local send sequence number*/

unsigned short sendWindow; /*send window size*/

unsigned long recvSeq; /*receive sequence number*/

unsigned long attnSendSeq; /*attention send sequence number*/

unsigned long attnRecvSeq; /*attention receive sequence */

/* number*/

unsigned char ocMode; /*open connection mode*/

unsigned char ocInterval; /*open connection request retry */

/* interval*/

unsigned char ocMaximum; /*open connection request retry */

/* maximum*/

Boolean secure; /*TRUE if session was */

/* authenticated*/

AuthKeyPtr sessionKey; /*encryption key for session*/

unsigned longcredentialsSize;

/*length of credentials*/

Ptr credentials; /*pointer to credentials*/
5-88 Summary of ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

Ptr workspace; /*pointer to workspace for */

/* connection. align on even */

/* boundary and length equals */

/* sdspWorkSize*/

AuthIdentity recipient; /*identity of recipient */

/* (or initiator if active mode)*/

UTCTime issueTime; /*when credentials were issued*/

UTCTime expiry; /*when credentials expire*/

RecordIDPtr initiator; /*pointer to RecordID of */

/* initiator returned*/

Boolean hasIntermediary; /*is set if credentials */

/* have an intermediary*/

RecordIDPtr intermediary; /*pointer to RecordID of */

/* intermediary returned*/

};

The TRSecureParams Record

typedef struct TRSecureParams TRSecureParams;

struct SDSPParamBlock {

struct QElem *qLink; /*reserved*/

short qType; /*reserved*/

short ioTrap; /*reserved*/

Ptr ioCmdAddr; /*reserved*/

ProcPtr ioCompletion;

/*pointer to completion routine*/

OSErr ioResult; /*routine result*/

char *ioNamePtr; /*reserved*/

short ioVRefNum; /*reserved*/

short ioCRefNum; /*ADSP driver refNum*/

short csCode; /*ADSP driver control code*/

long qStatus; /*ADSP internal use*/

short ccbRefNum; /*connection end refNum*/

union {

TRinitParams initParams; /*dspInit, dspCLInit*/

TRopenParams openParams; /*dspOpen, dspCLListen, dspCLDeny*/

TRcloseParams closeParams; /*dspClose, dspRemove*/

TRioParams ioParams; /*dspRead, dspWrite*/

TRattnParams attnParams; /*dspAttention*/

TRstatusParams statusParams; /*dspStatus*/

TRoptionParams optionParams; /*dspOptions*/
Summary of ADSP 5-89

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
TRnewcidParams newCIDParams; /*dspNewCID*/

TRSecureParams secureParams; /*dspOpenSecure*/

} u;

};

typedef struct SDSPParamBlock SDSPParamBlock;

typedef SDSPParamBlock *SDSPPBPtr;

Assembly-Language Summary 5

Constants 5

ADSP Queue Element Equates and Sizes

csQStatus EQU CSParam ;ADSP internal use

csCCBRef EQU csQStatus+4 ;refnum of ccb

Command Codes

dspInit EQU 255 ;create a new connection end

dspRemove EQU 254 ;remove a connection end

dspOpen EQU 253 ;open a connection

dspClose EQU 252 ;close a connection

dspCLInit EQU 251 ;create a connection listener

dspCLRemove EQU 250 ;remove a connection listener

dspCLListen EQU 249 ;post a listener request

dspCLDeny EQU 248 ;deny an open connection request

dspStatus EQU 247 ;get status of connection end

dspRead EQU 246 ;read data from the connection

dspWrite EQU 245 ;write data on the connection

dspAttention EQU 244 ;send an attention message

dspOptions EQU 243 ;set connection end options

dspReset EQU 242 ;forward reset the connection

dspNewCID EQU 241 ;generate a cid for a connection end

sdspOpen EQU 229 ;open a secure connection
5-90 Summary of ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

Open Connection Modes

ocRequest EQU 1 ;request a connection with remote

ocPassive EQU 2 ;wait for a connection request from

; remote

ocAccept EQU 3 ;accept request as delivered by

; listener

ocEstablish EQU 4 ;consider connection to be open

Connection States

sListening EQU 1 ;for connection listeners

sPassive EQU 2 ;waiting for a connection request

; from remote

sOpening EQU 3 ;requesting a connection with remote

sOpen EQU 4 ;connection is open

sClosing EQU 5 ;connection is being torn down

sClosed EQU 6 ;connection end state is closed

Client Event Flags (Bit-Mask)

eClosed EQU $80 ;received connection closed advice

eTearDown EQU $40 ;closed due to broken connection

eAttention EQU $20 ;received attention message

eFwdReset EQU $10 ;received forward reset advice

Miscellaneous Equates

attnBufSize EQU 570 ;size of client attention message

minDSPQueueSize

EQU 100 ;minimum size for both receive and

; send queues

sdspWorkSize EQU 2048 ;size of ASDSP workspace

ASDSP Encrypt and End-of-Message Flags and Masks

dspEOMBit EQU 0 ;set if EOM at end of write

dspEncryptBit EQU 1 ;set to encrypt message

dspEncryptMask EQU $1 ;mask for setting the encrypt bit

dspEOMMask EQU $2 ;mask for setting the EOM bit
Summary of ADSP 5-91

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
Data Structures 5

ADSP Connection Control Block Data Structure

DPS Parameter Block Common Fields for ADSP and ASDSP

dspInit and dspCLInit Parameter Variant

dspOptions Parameter Variant

0 ccbLink long link to next CCB
4 refNum word reference number
6 state word state of the connection end
8 userFlags byte user flags for connection
9 localSocket byte local socket number

10 remoteAddress long internet address of remote end
14 attnCode word attention code received
16 attnSize word size of received attention data
18 attnPtr long pointer to received attention data
22 reserved 220 bytes reserved

0 qLink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved

12 ioCompletion long address of completion routine
16 ioResult word result code
18 ioNamePtr long reserved
22 ioVRefNum word reserved
24 ioCRefNum word driver reference number
28 qStatus long reserved
32 ccbRefNum word reference number of CCB

26 csCode word dspInit or dspCLInit
34 ccbPtr long pointer to CCB
38 userRoutine long pointer to routine to call on connection events
42 sendQSize word size in bytes of the send queue
44 sendQueue long pointer to send queue
48 recvQSize word size in bytes of the receive queue
50 recvQueue long pointer to receive queue
54 attnPtr long pointer to buffer for incoming attention messages
58 localSocket byte DDP socket number for this connection end

16 ioResult word result code
24 ioCRefNum word driver reference number
26 csCode word always dspOptions
34 sendBlocking word send-blocking threshold
38 badSeqMax byte threshold to send retransmit advice
39 useCheckSum byte DDP checksum flag
5-92 Summary of ADSP

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)

5
A

ppleTalk D
ata S

tream
 P

rotocol (A
D

S
P

)

dspOpen, dspCLListen, and dspCLDeny Parameter Variant

sdspOpen Parameter Variant

dspNewCID Parameter Variant

dspClose, dspRemove, and dspCLRemove Parameter Variant

26 csCode word dspOpen, dspCLListen, or dspCLDeny
34 localCID word ID of this connection end
36 remoteCID word ID of remote connection end
38 remoteAddress long remote internet address
42 filterAddress long filter for open-connection requests
46 sendSeq long initial send sequence number
50 sendWindow word initial size of remote receive queue
52 recvSeq long initial receive sequence number
56 attnSendSeq long attention send sequence number
60 attnRecvSeq long attention receive sequence number
64 ocMode byte connection-opening mode
65 ocInterval byte interval between open requests
66 ocMaximum byte retries of open-connection request

26 csCode word sdspOpen
34 localCID word ID of this connection end
36 remoteCID word ID of remote connection end
38 remoteAddress long remote internet address
42 filterAddress long filter for open-connection requests
46 sendSeq long initial send sequence number
50 sendWindow word initial size of remote receive queue
52 recvSeq long not used for ASDSP
56 attnSendSeq long attention send sequence number
60 attnRecvSeq long not used for ASDSP
64 ocMode byte connection-opening mode
65 ocInterval byte interval between open requests
66 ocMaximum byte retries of open-connection request
68 secure word flag that determines if ASDSP authenticates

the connection
70 sessionKey long pointer to the encryption key for the session
74 credentialsSize long length of credentials
78 credentials long pointer to credentials
82 workspace long pointer to workspace for connection
86 recipient long identity of recipient
90 issueTime long time when credentials were issued
94 expiry long time when credentials expire
98 initiator long pointer to record ID of initiator

102 hasIntermediary word TRUE if credentials have an intermediary
104 intermediary long pointer to record ID of intermediary

26 csCode word always dspNewCID
34 newCID word ID of new connection

26 csCode word dspClose, dspRemove, or dspCLRemove
34 abort byte abort send requests or connection listener if not 0
Summary of ADSP 5-93

C H A P T E R 5

AppleTalk Data Stream Protocol (ADSP)
dspStatus Parameter Variant

dspRead and dspWrite Parameter Variant

dspAttention and dspReset Parameter Variant

Result Codes 5

26 csCode word always dspStatus
34 statusCCB pointer pointer to CCB
38 sendQPending word bytes waiting to be sent or acknowledged
40 sendQFree word available send queue in bytes
42 recvQPending word bytes waiting to be read from queue
44 recvQFree word available receive queue in bytes

26 csCode word dspRead or dspWrite
34 reqCount word requested number of bytes
36 actCount word actual number of bytes read or written
38 dataPtr pointer pointer to data buffer
42 eom byte for ADSP: 1 if end of message; 0 otherwise

for ASDSP: bit 0 = end of message; bit 1 turns on
encryption, if set

43 flush byte 1 to send data now; 0 otherwise

26 csCode word dspAttention or dspReset
34 attnCode word client attention code
36 attnSize word size of attention data in bytes
38 attnData pointer pointer to attention data

noErr 0 No error or unrecognized event code
ddpSktErr –91 Error opening socket
errOpenDenied –1273 Open request denied by recipient
errDSPQueueSize –1274 Send or receive queue is too small
errFwdReset –1275 Read terminated by forward reset
errAttention –1276 Attention message too long
errOpening –1277 Attempt to open connection failed
errState –1278 Bad connection state for this operation
errAborted –1279 Request aborted by dspRemove or

dspClose routine
errRefNum –1280 Bad connection reference number
kOCEUnsupportedCredentialsVersion –1543 Credentials version not supported
kOCEBadEncryptionMethod –1559 During the authentication process, the

ASDSP implementations could not agree
on an encryption method to be used
(ASDSP can support multiple stream
encryption methods. In Release 1, only
RC4 and “no encryption” are supported.)

kOCENoASDSPWorkSpace –1570 You passed NIL for the workspace
parameter

kOCEAuthenticationTrouble –1571 Authentication process failed
5-94 Summary of ADSP

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to AppleTalk TOC
	 Introduction to AppleTalk
	 AppleTalk Utilities TOC
	 AppleTalk Utilities
	 Name-Binding Protocol (NBP) TOC
	 Name-Binding Protocol (NBP)
	 Zone Information Protocol (ZIP) TOC
	 Zone Information Protocol (ZIP)
	 AppleTalk Data Stream Protocol (ADSP) TOC
	AppleTalk Data Stream Protocol (ADSP)
	About ADSP
	Connections, Connection Ends, and Connection State...
	Connection Listeners
	Reliable Delivery of Data
	Unsolicited ADSP Events

	About ASDSP
	The Authentication Process
	The Data Encryption Feature

	Using ADSP
	Allocating Memory for ADSP
	Creating and Using a Connection Control Block
	Opening and Maintaining an ADSP Connection
	Creating and Using a Connection Listener
	Writing a User Routine for Connection Events

	Using ASDSP
	Opening a Secure Connection
	From the Initiator’s End
	From the Recipient End
	Sending Encrypted Data Across a Secure Connection

	ADSP Reference
	Data Structures
	The ADSP Connection Control Block Record
	The Address Block Record
	The DSP Parameter Block
	The ASDSP Parameter Block
	The TRSecureParams Record

	Routines
	Establishing and Terminating an ADSP Connection
	Establishing and Terminating an ADSP Connection Li...
	Maintaining an ADSP Connection and Using It to Exc...

	Summary of ADSP
	Pascal Summary
	Constants
	Data Types

	C Summary
	Constants
	Data Types

	Assembly-Language Summary
	Constants
	Data Structures

	Result Codes

	 AppleTalk Transaction Protocol (ATP) TOC
	 AppleTalk Transaction Protocol (ATP)
	 Datagram Delivery Protocol (DDP) TOC
	 Datagram Delivery Protocol (DDP)
	 AppleTalk Session Protocol (ASP) TOC
	 AppleTalk Session Protocol (ASP)
	 AppleTalk Filing Protocol (AFP) TOC
	 AppleTalk Filing Protocol (AFP)
	 Link-Access Protocol (LAP) Manager TOC
	 Link-Access Protocol (LAP) Manager
	 Ethernet, Token Ring, Fiber Distribution Data Interface TOC
	 Ethernet, Token Ring, Fiber Distribution Data Interface
	 Multinode Architecture TOC
	 Multinode Architecture
	 Glossary
	 Index
	 Colophon

