CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

This chapter describes the AppleTalk Data Stream Protocol (ADSP) that you use to
establish a session to exchange data between two network processes or applications in
which both parties have equal control over the communication. You should read this
chapter if you want to write an application that supports the exchange of more than a
small amount of data between two parties who each can both send and receive streams
of data.

This chapter also describes the AppleTalk Secure Data Stream Protocol (ASDSP), a secure
version of ADSP, that allows users of your application to communicate over an ADSP
session after the users’ identities have been authenticated. Users can then exchange
encrypted data over the session. For your application to use ASDSP, the system on which
it runs must have the AppleTalk Open Collaboration Environment (AOCE) software
installed and must have access to an AOCE server. To use ASDSP, you must also use the
Authentication Manager, which is a component of the AOCE software. For information
on the Authentication Manager, refer to Inside Macintosh: AOCE Application Programming
Interfaces.

ASDSP enhances ADSP with authentication and encryption features. When this chapter
discusses components of ADSP, such as connection ends and connection listeners, you
can assume that the information also applies to ASDSP. The sections in this chapter that
discuss ASDSP describe any specific differences between it and the standard version of
ADSP. To use ASDSP, you should be familiar with ADSP.

For an overview of ADSP and how it fits within the AppleTalk protocol stack, read the
chapter “Introduction to AppleTalk” in this book, which also introduces and defines
some of the terminology used in this chapter. For a complete explanation of the ADSP
specification, see Inside AppleTalk, second edition.

About ADSP

ADSP includes both session and transport services, and it is the most commonly used of
the AppleTalk transport protocols. The .DSP driver implements ADSP. ADSP allows you
to establish and maintain a connection between two AppleTalk network entities and
transfer data across this connection as a continuous stream. Because ADSP is a client

of DDP, data that you transmit using ADSP is actually sent and received over the
AppleTalk internet in packets. However, ADSP builds a session connection on top of

the packet transfer services that DDP provides so that applications using ADSP can
exchange data as a continuous stream. Figure 5-1 on page 5-4 shows ADSP and the
underlying protocols that it uses; ADSP is a client of DDP, just as your application is a
client of ADSP.

About ADSP 5-3

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Figure 5-1 ADSP and its underlying protocols

ADSP

@E@I@% .45 >

LAP Manager

3 <=
o
=1

Communication between two applications using ADSP occurs over a connection that is
made between the two sockets that these network entities use; ADSP assigns a socket to
be used when you initialize each end of the connection, and your application becomes
a client of that socket. Because this connection exists for the duration of the exchange,
ADSP is called a connection-oriented protocol. ADSP manages and controls the data flow
between the two sockets throughout the session to ensure that

» the data is delivered and received in the order in which it was sent
= duplicate data is not sent

= the application or process at the receiving end of the connection has the buffer
capacity to accept the data

In an ADSP session, both ends of the connection have equal control over the communica-
tion in a peer-to-peer relationship. For the two ends of an ADSP connection to function
properly, each must maintain information to control the connection and determine the
connection state. To accommodate these requirements, the socket at either end of the
connection has associated with it information that defines the state of the connection

and information that the application and ADSP use to control the connection and
communicate over it. The combination of a socket and the ADSP information maintained
by the socket client is referred to as a connection end. To create a connection, two
connection ends must be set up and initialized. Each connection end views itself as the
local end and the other as the remote end.

About ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Your application can use ADSP to

create a connection end
request a connection with a remote connection end

create a connection listener to wait passively for connection requests from remote
connection ends (see “Connection Listeners” on page 5-7 for more information)

read data from and write it to an open connection
close a connection without removing it

remove a connection end

Figure 5-2 shows the order in which applications commonly call the ADSP routines to
perform these functions for a connection end. (Figure 5-4 on page 5-8 shows this for a
connection listener.)

Figure 5-2 Steps for creating an ADSP connection end

Create connection end

U

Open connection

U

Use connection
(read bytes, write bytes,
send attention message,
get status, forward reset)

U

Close connection

U

Remove connection end

ADSP provides for a full-duplex data stream between the two ends of the connection
that allows for a full-duplex dialog; this means that either end of the connection can
call routines to send data at any time. (However, full-duplex does not mean that both
connection ends actually send electrical signals at the same time; ADSP controls this
process.) See the chapter “Introduction to AppleTalk” in this book for more information
on full-duplex communication.

About ADSP

5-5

(4SAv) 10901014 Weans ereqd xreLaddy -

5-6

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

In addition to the full-duplex data stream that an ADSP session maintains, ADSP allows
either end of a connection to send an attention message to the other end without
interrupting the primary flow of data.

Among the features that ADSP provides are
= an end-of-message feature that lets you break streams of data into logical messages

= an attention-message feature that lets you and your partner application signal to each
other outside the normal exchange of data

» a forward-reset feature that lets you cancel the delivery of any data that is in your
connection end’s send queue and any data that you have sent that is in transit and
that the remote connection end has not received

= abuilt-in flow control feature that ensures that your application sends data only if its
remote partner has the buffer capacity to receive it

Connections, Connection Ends, and Connection States

A connection is an association between two sockets that supports the flow of data
between the clients of those sockets in a reliable way. Each socket can maintain
concurrent ADSP connections with several other sockets, but there can be only one
ADSP connection between any two sockets at one time. For example, a single socket on
node A can have multiple concurrent sessions consisting of one connection to a socket on
node B, one connection to a socket on node C, and one connection to a socket on node D.

When you establish an ADSP connection end, you allocate a nonrelocatable block of
memory called a connection control block (CCB) in which ADSP stores state informa-
tion about the connection end. When you initialize the connection end, ADSP uses the
CCB to set up control information that it maintains and uses for synchronizing communi-
cation with the other socket client and for error checking.

You can read the CCB fields to gain information about the current state of the connection
end. In addition to the unique AppleTalk internet address associated with a socket, each
instance of a connection end has associated with it a connection ID that identifies it. You
can open a connection for a socket and close that connection without actually removing
the connection end, and then open another connection for the same socket. When you
close a connection, the socket number remains associated with the connection, as do the
data structures whose memory you allocated. ADSP uses this to ensure that any data
meant for the old connection end is not delivered to the new connection end using the
same socket number and data structures.

ADSP cannot deliver packets to a connection end based on the AppleTalk internet socket
address alone. The connection ID ensures that a packet is delivered to the specific
connection end for which it was intended. You call the new connection ID (dspNewCl D)
routine to cause ADSP to assign a connection ID to the connection end before you open a
connection. ADSP assigns a connection ID number, which it includes in every packet that
it delivers from your connection end to a remote connection end.

About ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Figure 5-3 ADSP connection ends and their components

Application

<5> Connection ID Connection ID <E>

Connection end Connection end

Socket | Internet address I:> Socket | Internet address

- Session : Application
Connection control and Connection control and

state information state information

Figure 5-3 shows two connection ends and the client applications that use them to
participate in a session with each other over an ADSP connection. This figure shows
the components that constitute a connection end.

At any time, either end of a potential ADSP connection can initiate a session. Also, either
end of the connection can tear down the connection when it is no longer needed.

= When two connection ends establish communication, the connection is considered an
open connection.

= When both connection ends terminate the connection and dispose of the connection
information each maintains, the connection is considered a closed connection.

» If one connection end is established but the other connection end is unreachable or
has disposed of its connection information, the connection is considered a half-open
connection.

No communication can occur over a half-open or closed connection.

To prevent a half-open connection from tying up resources, ADSP automatically closes
any half-open connection that cannot reestablish communication within two minutes
and informs its client that the connection is closed. Under these circumstances, ADSP
will call the application-supplied completion routine for any pending asynchronous
ADSP routine, if one was provided. Otherwise, the pending ADSP routine will return to
the calling program with an er r St at e error message. If you attempt to call an ADSP
routine on a half-open connection, ADSP also returns the er r St at e error message.

Connection Listeners

A connection listener or a connection-listening socket is a socket that accepts open-
connection requests and passes them along to its client, a connection server process,

for further processing. The server then selects a socket and requests ADSP to open a
connection using that socket. The connection listener can also deny an open-connection
request. By specifying filtering values for the network address of the requester, you can
control which requests are accepted or denied. The use of a connection listener is typical
of a server environment in which a server, such as a file server, is registered with NBP

About ADSP 5-7

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

using a single name. Various connection ends throughout the network contact the
server’s connection listener with open-connection requests. The connection server can
honor the requests, or it can deny them. It might deny a request, for example, when its
resources are exhausted. Figure 5-4 shows the tasks for an ADSP connection listener in
the order that applications commonly perform them.

Figure 5-4 Standard tasks for an ADSP connection listener

5-8

Create connection
listener

U

Listen for
connection request

I
g])]

Deny connection . Remove
nnection ID .)
request Get connectio connection listener
Create

connection end

d

Go to steps for creating an ASDP connection end.

Reliable Delivery of Data

ADSP guarantees that data bytes are delivered in the same order as they were sent and
that they are free of duplicates. It ensures that all data sent is delivered to the remote
connection end’s receive buffer. To accomplish this, ADSP associates a sequence number
with each byte that it sends. ADSP discards any out-of-sequence data or any duplicates
that are delivered. ADSP uses the sequence numbers to ensure that all of the data that
one end sends is received by the other end. If data is lost, ADSP retransmits it. ADSP
can send the data again because the data remains in the sending connection end’s send
queue until the remote end actually receives a copy of it. For more information about
how ADSP delivers data, see Inside AppleTalk, second edition.

Unsolicited ADSP Events

After you open a connection, you can receive events that are not generated in response to
any of the ADSP calls that your application makes. The other connection end or ADSP
initiates these events. For example, the remote connection end can send you an attention
message or a forward reset.

About ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

You receive a forward reset event when the remote connection end cancels delivery of all
outstanding data to your connection end. A forward reset causes ADSP to discard all
data in the send queue, all data in transit to the remote connection end, and all data in
the remote connection end’s receive queue that the client has not yet read.

The remote connection end can close the connection, and this, too, will generate an event
notification for your connection end. You also receive event notification when ADSP
tears down a connection because the remote end has become unreachable.

ADSP sets the bits of your connection end’s connection control block user flags field to
identify the type of event. For more information about this field, see “Creating and Using
a Connection Control Block” on page 5-12. You can provide a user routine that ADSP is
to call whenever you receive one of these events. This user routine is similar in concept
and use to an i oConpl et i on routine that many of the other AppleTalk protocols use.
See “Writing a User Routine for Connection Events” on page 5-26 for information on
how to write a user routine.

About ASDSP

This section describes the secure version of ADSP referred to as AppleTalk Secure

Data Stream Protocol (ASDSP). ASDSP is a superset of ADSP that includes authentica-
tion and encryption features. To use ASDSP, you should be familiar with both ADSP
and ASDSP.

ASDSP features allow you to provide users of your application with the ability to
exchange encrypted data across a secure session that is established after the users’
identities are proven through what is known as the authentication process. Before
transmitting the data that a user sends, ASDSP encrypts it and then decrypts the data
before delivering it to the application at the remote connection end. Users might want
to identify one another, for example, to verify that a piece of electronic mail came from
the sender who claimed to be its author, and they might want to encrypt data that
traverses a network if that data is considered confidential or private and they do not
want others to intercept and read the data.

To verify the identities of two ends of a connection, an ASDSP application relies on
information that is provided by an Apple Open Collaboration Environment (AOCE)
authentication server. Your ASDSP client application at the connection end that initiates
the session calls the AOCE Authentication Manager to acquire the information necessary
for the authentication process from the authentication server, and then it passes this
information on to ASDSP.

Note

Because ASDSP is dependent on information from the authentication
server, your ASDSP application can only run on systems that also run
AOCE and that have access to an AOCE authentication server. If

the AOCE software is installed on the system that runs your application
and if the system has access to an AOCE authentication server, your
application can use ASDSP. O

About ASDSP 5-9

(4SAv) 10901014 Weans ereqd xreLaddy -

5-10

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

You perform the first part of the authentication process by requesting information from
the authentication server and giving that information to ASDSP to transmit to the other
end of the connection. The authentication process culminates in a challenge-and-reply
handshake that the ASDSP code performs on behalf of your ASDSP client application
at each end of the connection to ensure that the application users are who they claim to
be. The ASDSP client application of the connection end that retrieves the information
from the authentication server and makes the request to open the session is called the
initiator; the ASDSP client application of the connection end that receives the request
and the information from the server is called the recipient.

The Authentication Process

This section describes the general strategy of the authentication process. Understanding
what this process entails can be helpful in understanding the meaning and use of the
parameters that you get from the authentication server and pass to ASDSP.

The initiator and the recipient each have a private key. The private key, also called a user
key or client key, is a number that is derived from a password; the number is used by an
encryption algorithm.

The initiator calls the authentication server to request information and credentials

to be used by ASDSP in establishing an authenticated session. The credentials contain
information that is required in order to prove that the users of both ends of the
connection are who they claim to be. The user of the initiator ASDSP client application
gives the authentication server his own name or identity and that of the user of the
recipient ASDSP client application.

The authentication server returns to the initiator a unique session key that the server
generates exclusively for use by the authentication process for this session; the session
key is valid for a limited time only. The authentication server also returns to the initiator
a set of credentials that are encrypted in the recipient’s private key. The credentials
contain the session key also and the initiator’s identity, as well as the identity of an
intermediary or proxy, if one was used to obtain the credentials from the authentica-
tion server.

The initiator passes a block of data containing the credentials to ASDSP, and ASDSP
on the initiator’s end sends the credentials to ASDSP on the recipient’s end. The latter
decrypts the entire credentials block, obtaining the session key from the credentials
block. ASDSP on the recipient’s end then uses the session key in the authentication
process that it performs on behalf of the recipient. ASDSP has the recipient’s private
key, which it uses to decrypt the credentials. If the authentication process succeeds,
ASDSP returns all of the credentials to the recipient.

Because the initiator and ASDSP on behalf of the recipient must each decrypt the session
key using their own private key, they can each be convinced that the other is who they
claim to be if they can conclude that the other knows the session key. The need for this
conviction begins the challenge-and-reply authentication process that enables each end
to confirm that the other end also knows the unique session key.

About ASDSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

ASDSP performs the challenge-and-reply process on behalf of the client applications in
a manner that is transparent to the applications. If the authentication process completes
successfully, ASDSP opens a secure connection; if the authentication process fails,
ASDSP returns an error code to both the initiator and the recipient and tears down the
connection that was established to perform the authentication process. To learn more
about the challenge-and-reply process, see the chapter “Authentication Manager” in
Inside Macintosh: AOCE Application Programming Interfaces.

The Data Encryption Feature

After ASDSP successfully completes the authentication process, the two ends of the
connection whose identities have been verified can exchange data and they can also
encrypt that data. The ASDSP encryption feature allows each party to send data that can
be trusted to be securely transmitted in a manner that is unreadable by anyone other
than the intended recipient until that data is decrypted by ASDSP and delivered to the
recipient at the other end of the ASDSP session connection. ASDSP encrypts only data
in the main data stream; it does not encrypt data in attention messages or ASDSP

packet headers.

Using ADSP

This section describes how to use ADSP to

= open and maintain an ADSP connection, including how to
o initialize the connection end (dspl ni t)
o set options that control the behavior of the connection end (dspQpt i ons)
o open the connection (dspQOpen)
o read (dspRead) and write (dspW i t e) data over the connection

o send an attention code and an attention message to the remote connection end
(dspAttention)

o close the connection (dspC ose) and remove it (dspRenove)

» create and use a connection listener, including how to
o initialize a connection listener (dspCLI ni t)

o activate the connection listener, causing it to listen for an open-connection request
(dspCLLi st en), filtering requests that you will accept by restricting network
addresses

o initialize (dspl ni t) and open (dspOpen) a connection end in response to an open
request that you want to accept

o read (dspRead) and write (dspW i t e) data over the connection and close the
connection (dspd ose)

o remove the connection listener when you are finished with it (dspCLRenove)

= handle unsolicited connection events using your own user routine

Using ADSP 5-11

(4SAv) 10901014 Weans ereqd xreLaddy -

5-12

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

You execute ADSP routines by calling the Device Manager’s PBCont r ol function. When
you call the PBCont r ol function for an ADSP routine, you provide a pointer to a
parameter block of type DSPPar anBl ock.

You use the parameter block fields to specify the input parameters that ADSP requires to
execute the command. The parameter block also includes fields whose values ADSP
returns. For a complete description of the DSP parameter block and its fields, see “The
DSP Parameter Block” beginning on page 5-38.

Allocating Memory for ADSP

To open and maintain an ADSP session, you must allocate memory required for the
session. Depending on the ADSP routine that you call, you must allocate the following;:

= storage of the state information that ADSP maintains at either end of a connection (see
the discussion of the connection control block in “Connections, Connection Ends, and
Connection States” on page 5-6)

= a parameter block that you use to pass parameters when you execute an ADSP routine
= asend queue and a receive queue
= an attention message buffer

This memory belongs to ADSP until you explicitly remove the connection end.

Creating and Using a Connection Control Block

When you establish an ADSP connection end, you must allocate a nonrelocatable block
of memory for (and provide a pointer to) a connection control block (CCB) data
structure, which ADSP uses to store state information about the connection end. This
memory belongs to ADSP until you explicitly remove the connection end using the
dspRenove routine (see “dspRemove” on page 5-62). Only then can you release or reuse
the memory that you allocated for the CCB.

Most of the fields of the CCB are for ADSP’s internal use. Although you must not alter
any of the CCB fields except one, the user Fl ags field, you may poll them to gain
information about the current state of the connection end.

When your connection end receives an unsolicited event, such as an attention message
or a forward reset, ADSP’s interrupt handler sets a bit corresponding to the event type in
the user Fl ags field and calls your user routine, if you provided one. If you did not
provide a user routine, you can test these bits to determine when an unsolicited event
occurs on the connection end.

After you read them, you must clear the bits either through your user routine or directly
before you handle the event.

The CCB is a record of type TRCCB that must consist of 242 bytes. See “The ADSP
Connection Control Block Record” beginning on page 5-35 for a description of the
CCB and the fields that comprise it.

Using ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Opening and Maintaining an ADSP Connection

To use ADSP to establish and maintain a connection between a socket on your local node
and a remote socket, use the following procedure:

1. Use the Device Manager’s OpenDr i ver function to open the MPP driver, and then
use it again to open the .DSP driver. The MPP driver must be open before you open
the .DSP driver. The QpenDr i ver function call for the .DSP driver returns the driver
reference number. You must supply this reference number each time you call the
Device Manager’s PBCont r ol function to execute an ADSP routine.

2. Allocate nonrelocatable memory for a CCB, send and receive queues, and an attention-
message buffer. If you need to allocate the memory dynamically while the program
is running, use the NewPt r routine. Otherwise, the way in which you allocate the
memory depends on the compiler you are using. (Listing 5-1 on page 5-17 shows how
to do this in Pascal.) The memory that you allocate becomes the property of ADSP
when you call the dspl ni t routine to establish a connection end. You cannot write
any data to this memory except by calling ADSP, and you must ensure that the
memory remains locked until you call the dspRenpve routine to eliminate the
connection end.

The CCB is 242 bytes. The attention-message buffer must be 570 bytes. When you
send bytes to a remote connection end, ADSP stores the bytes in a buffer called the
send queue. Until the remote connection end acknowledges their receipt, ADSP keeps
the bytes you sent in the send queue so that they are available to be retransmitted if
necessary. When the local connection end receives bytes, it stores them in a buffer,
called the receive queue, until you read them. The sizes you need for the send and
receive queues depend on the lengths of the messages being sent.

ADSP does not transmit data from the remote connection end until there is room for
it in your receive queue. If your send or receive queues are too small, they limit the
speed with which you can transmit and receive data. A queue size of 600 bytes should
work well for most applications. If you are using ADSP to send a continuous flow

of data, a larger data buffer improves performance. If your application is sending or
receiving the user’s keystrokes, a smaller buffer should be adequate. The constant

nm nDSPQueueSi ze, which is defined in the MPW interface file for ADSP, indicates
the minimum queue size that you can use.

If you are using a version of the .DSP driver prior to version 1.5, you must allocate
send and receive queues that are 12 percent larger than the actual buffer sizes you
need. You must do this in order to provide some extra space for use by the .DSP
driver. Version 1.5 and later versions of the .DSP driver use a much smaller, and
variable, portion of buffer space for overhead. The .DSP driver version number is
stored in the low byte of the qFl ags field, which is the first field in the dCt | QHdr
field in the driver’s device control entry (DCE) data structure. Version 1.5 of the

.DSP driver has a version number of 4 in the DCE. See the chapter “Device Manager”
in Inside Macintosh: Devices for information on the DCE.

3. Use the dspl ni t routine to establish a connection end. You must provide pointers
to the CCB, send queue, receive queue, and attention-message buffer. You may also
provide a pointer to a user routine that ADSP calls when your connection end
receives an unsolicited connection event. See the section”Writing a User Routine for
Connection Events” on page 5-26 for information on providing a user routine.

Using ADSP 5-13

(4SAv) 10901014 Weans ereqd xreLaddy -

5-14

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

If there is a specific socket that you want to use for the connection end, you can
specify the socket number in the | ocal Socket parameter. If you want ADSP to
assign the socket for you, specify 0 for the | ocal Socket parameter; in this case,
ADSP returns the socket number when the dspl ni t routine completes execution.

. If you wish, you can use the Name-Binding Protocol (NBP) routines to add the name

and address of your connection end to the node’s names table. See the chapter
“Name-Binding Protocol (NBP)” in this book for information on NBP.

. You can use the dspQpt i ons routine to set several parameters that control the

behavior of the connection end. Because every parameter has a default value, the use
of the dspOpt i ons routine is optional. You can specify values for the following
parameters:

o The sendBl ocki ng parameter, which sets the maximum number of bytes that
may accumulate in the send queue before ADSP sends a packet to the remote
connection end. You can experiment with different values of the sendBl ocki ng
parameter to determine which provides the best performance. Under most
circumstances, the default value of 16 bytes gives good performance.

o The badSeqMax parameter, which sets the maximum number of out-of-sequence
data packets that the local connection end can receive before requesting the remote
connection end to retransmit the missing data. Under most circumstances, the
default value of 3 provides good performance.

o The useCheckSumparameter, which determines whether the Datagram Delivery
Protocol (DDP) should compute a checksum and include it in each packet that it
sends to the remote connection end. Using checksums slows communications
slightly. Normally ADSP and DDP perform enough error checking to ensure safe
delivery of all data. Set the useCheckSumparameter to 1 only if you feel that the
network is highly unreliable.

. Call the dspQOpen routine to open the connection. The dspQpen routine has four

possible modes of operation: ocAccept, ocEst abl i sh, ocRequest, and
ocPassi ve. Normally you use either the ocRequest or ocPassi ve mode. You
must specify one of these four modes for the ocMbde parameter when you call
the dspQpen routine.

The ocAccept mode is used only by connection servers. The ocEst abl i sh mode
is used by routines that determine their connection-opening parameters and establish
a connection independently of ADSP, but use ADSP to transmit and receive data.

Use the ocRequest mode when you want to establish communications with a
specific socket on the AppleTalk internet. When you execute the dspQpen routine

in the ocRequest mode, ADSP sends an open-connection request to the address
you specify.

If the socket to which you send the open-connection request is a connection listener,
the connection server that operates that connection listener can select any socket

on the internet to be the connection end that responds to the open-connection request.
To restrict the socket from which you will accept a response to your open-connection
request, specify a value for the fi | t er Addr ess parameter to the dspQpen routine.
When your connection end receives a response from a socket that meets the
restrictions of the f i | t er Addr ess parameter, it acknowledges the response and
ADSP completes the connection.

Using ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

To use the ocRequest mode, you must know the complete internet address of the
remote socket, and the ADSP client at that address must either be a connection listener
or have executed the dspQOpen routine in the ocPassi ve mode. You can use the NBP
routines to obtain a list of names of objects on the internet and to determine the
internet address of a socket when you know its name. See the chapter “Name-Binding
Protocol (NBP)” in this book for information on the NBP routines.

Use the ocPassi ve mode when you expect to receive an open-connection request
from a remote socket. You can specify a value for the f i | t er Addr ess parameter to
restrict the network number, node ID, or socket number from which you will accept
an open-connection request. When your connection end receives an open-connection
request that meets the restrictions of the f i | t er Addr ess parameter, it acknowledges
the request and ADSP completes the connection.

You can poll the state field in the CCB to determine when the connection end is
waiting to receive an open-connection request, when the connection end is waiting to
receive an acknowledgment of an open-connection request, and when the connection
is open. See the section “The ADSP Connection Control Block Record” beginning on
page 5-35 for a description of the CCB fields. Alternatively, you can check the result
code for the dspQpen routine when the routine completes execution. If the routine
returns the NOEr r result code, then the connection is open.

7. Use the dspRead routine to read data that your connection end has received from
the remote connection end. Use the dspW i t e routine to send data to the remote
connection end. Use the dspAt t ent i on routine to send attention messages to the
remote connection end.

The dspW i t e routine places data in the send queue. ADSP is a full-duplex, symmetric
communications protocol: You can send data at any time, and your connection end can
receive data at any time, even at the same time as you are sending data. ADSP
transmits the data in the send queue when one of the following conditions occurs:

o You call the dspW i t e routine with the flush parameter set to a nonzero number.

o The number of bytes in the send queue equals or exceeds the blocking factor that
you set with the dspOpt i ons routine.

o The send timer expires. The send timer sets the maximum amount of time that can
pass before ADSP sends all unsent data in the send queue to the remote connection
end. ADSP calculates the best value to use for this timer and sets it automatically.

o A connection event requires that the local connection end send an acknowledgment
packet to the remote connection end.

If you send more data to the send queue than it can hold, the dspW i t e routine does
not complete execution until it has written all the data to the send queue. If you
execute the dspW i t e routine asynchronously, ADSP returns control to your program
and writes the data to the send queue as quickly as it can. This technique provides the
most efficient use of the send queue by your program and by ADSP. Because ADSP
does not remove data from the send queue until that data has been not only sent but
also acknowledged by the remote connection end, using the f | ush parameter to the
dspW i t e routine does not guarantee that the send queue is empty. You can use

the dspSt at us routine to determine how much free buffer space is available in the
send queue.

Using ADSP 5-15

(4SAv) 10901014 Weans ereqd xreLaddy -

5-16

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

The dspRead routine reads data from the receive queue into your application’s
private data buffer. ADSP does not transmit data until there is space available in
the other end’s receive queue to accept it. Because a full receive queue slows the
communications rate, you should read data from the receive queue as often as
necessary to keep sufficient buffer space available for new data. You can use either
of two techniques to do this:

o Allocate a small receive queue (about 600 bytes) and call the dspRead routine
asynchronously. Your completion routine for the dspRead routine should then
call the dspRead routine again.

o Allocate a large receive queue and call the dspRead routine less frequently.

If there is less data in the receive queue than the amount you specify with the
reqCount parameter to the dspRead command, the command does not complete
execution until there is enough data available to satisfy the request. There are three
exceptions to this rule:

o If the end-of-message bit in the ADSP packet header is set, the dspRead command
reads the data in the receive queue, returns the actual amount of data read in the
act Count parameter, and returns the eomparameter set to 1.

o If you have closed the connection end before calling the dspRead routine (that is,
the connection is half open), the command reads whatever data is available and
returns the actual amount of data read in the act Count parameter.

o If ADSP has closed the connection before you call the dspRead routine and there is
no data in the receive queue, the routine returns the noEr r result code with the
act Count parameter set to 0 and the eomparameter set to 0.

In addition to the byte-stream data format implemented by the dspRead and

dspW i t e routines, ADSP provides a mechanism for sending and receiving control
signals or information separate from the byte stream. You use the dspAt t enti on
routine to send an attention code and an attention message to the remote connection
end. When your connection end receives an attention message, ADSP’s interrupt
handler sets the eAt t ent i on flag in the user Fl ags field of the CCB and calls your
user routine. Your user routine must first clear the user Fl ags field. Then your
routine can read the attention code and attention message and take whatever action
you deem appropriate.

Because ADSP is often used by terminal emulation programs and other applications
that pass the data they receive on to the user without processing it, attention messages
provide a mechanism for the applications that are clients of the connection ends to
communicate with each other. For example, you could use attention messages to
implement a handshaking and data-checking protocol for a program that transfers
disk files between two applications, neither one of which is a file server. Or a database
server on a mainframe computer that uses ADSP to communicate with Macintosh
computer workstations could use the attention mechanism to inform the workstations
when the database is about to be closed down for maintenance.

. When you are ready to close the ADSP connection, you can use the dspCl ose or

dspRenove routine to close the connection end. Use the dspCl ose routine if you
intend to use that connection end to open another connection and do not want

to release the memory you allocated for the connection end. Use the dspRenpve
routine if you are completely finished with the connection end and want to release
the memory.

Using ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

You can continue to read data from the receive queue after you have called the

dspd ose routine, but not after you have called the dspRenpve routine. You can

use the dspSt at us routine to determine whether any data is remaining in the receive
queue, or you can read data from the receive queue until both the act Count and
eomfields of the dspRead parameter block return 0.

If you set the abor t parameter for the dspC ose or dspRenpve routine to 0, then
ADSP does not close the connection or the connection end until it has sent—and
received acknowledgment for—all data in the send queue and any pending attention
messages. If you set the abor t parameter to 1, then ADSP discards any data in the
send queue and any attention messages that have not already been sent.

After you have executed the dspRenpve routine, you can release the memory you
allocated for the CCB and data buffers.

Listing 5-1 illustrates the use of ADSP. This routine opens the MPP and .DSP drivers and
allocates memory for its internal data buffers, for the CCB, and for the send, receive, and
attention-message buffers. Then the routine uses the dspl ni t routine to establish a
connection end and uses NBP to register the name of the connection end on the internet.
(The user routine specified by the user Rout i ne parameter to the dspl ni t function is
shown in Listing 5-3 on page 5-28.) Next, Listing 5-1 uses the dspOpt i ons routine to
set the blocking factor to 24 bytes. This routine then uses NBP to determine the address
of a socket whose name was selected by the user and sends an open-connection request
(dspQOpen) to that socket. When the dspQpen routine completes execution, it sends data
and an attention message to the remote connection end and reads data from its receive
queue. Finally, the routine closes the connection end with the dspRenpve routine and
releases the memory it allocated.

Listing 5-1 Using ADSP to establish and use a connection

PROCEDURE My ADSP;

CONST
gSi ze = 600; {queue space}
nyDat aSi ze = 128; {size of internal read/wite buffers}
bl ockFact = 24; {bl ocking factor}

TYPE
{Modi fy the connection control block to add storage for A5.}
nyTRCCB =
RECORD
myA5: Longlnt;
u: TRCCB;
END;

VAR
dspSendQPtr: Ptr;
dspRecvQPtr: Ptr;

Using ADSP 5-17

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

dspAtt nBuf Ptr: Ptr;
myDat a2ReadPt r: Ptr;
nyDat a2WitePtr: Ptr;

myAt t nMsgPt r: Ptr;
dspCCB: my TRCCB;
my DSPPBPt r : DSPPBPt r ;
my MPPPBPt 1 : MPPPBPt 1 ;
myNTENane: NanmesTabl eEntry;
nmy Addr Bl k: Addr Bl ock;
dr vr Ref Num I nt eger;
nppRef Num I nt eger;
connRef Num I nt eger;
gRecei vedAnEvent : Bool ean;
my At t nCode: I nt eger;
t enpFl ag: Byt e;
t enpCFl ag: I nt eger;
nmyErr: OSErr;
BEG N
nyErr := OpenDriver('.MP , nppRefNunj; {open . MPP driver}
| F nyErr <> noErr THEN DoErr (nyErr); {check and handle error}
myErr := OpenDriver('.DSP', drvrRefNum; {open .DSP driver}
| F nmyErr <> noErr THEN DoErr (nyErr); {check and handl e error}

{All ocate nenory for data buffers.}

dspSendQ@Ptr := NewPtr(qSize); { ADSP use onl y}
dspRecv@Ptr := NewPtr(qSize); { ADSP use onl y}
dspAttnBuf Ptr := NewPtr (attnBufSize); { ADSP use only}

nyDat a2ReadPtr : = NewPtr (mnmyDat aSi ze) ;
nyDat a2WitePtr := NewPtr(nyDataSi ze);
myAtt nMsgPtr : = NewPtr (nyDat aSi ze) ;

nyDSPPBPt r : = DSPPBPt r (NewPt r (Si zeOf (DSPPar anBl ock))) ;
nmyMPPPBPt r : = MPPPBPt r (NewPt r (Si zeOf (MPPPar anBl ock))) ;
W TH nyDSPPBPt r * DO {set up dsplnit paraneters}
BEG N
i oOCRef Num : = dr vr Ref Num {ADSP driver ref nunt
csCode : = dsplnit;
cchbPtr = @spCCB; {pointer to CCB}

user Routine : = @ryConnecti onEvt User Routi ne;
{see Listing 5-3}

send(@Si ze : = (gSi ze; {size of send queue}
sendQueue : = dspSendQPtr; {send- queue buffer}
recvQ@si ze : = qSi ze; {size of receive queue}

5-18 Using ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

recvQueue : = dspRecvQPtr; {receive-queue buffer}
attnPtr := dspAttnBufPtr; {receive-attention buffer}
| ocal Socket := 0; {l et ADSP assign socket}
END;
gRecei vedAnEvent : = FALSE
dspCCB. nyA5 : = Set Current A5; {save A5 for the user routine}

{Establish a connection end.}
nyErr := PBControl (ParnBl kPtr(nmyDSPPBPtr), FALSE)
| F nyErr <> noErr THEN DoErr (nyErr);
{check and handle error}
connRef Num : = nyDSPPBPt r ~. ccbRef Num
{save CCB ref numfor |ater}

NBPSet NTE(@ryNTENane, ' The hject', 'The Type'
"*' nyDSPPBPt r~. | ocal Socket);
{set up NBP nanes table entry}
W TH nyMPPPBPt r » DO {set up PRegi st erNane }
{ paraneters}

BEG N
interval := 7, {retransmt every 7*8=56 ticks}
count := 3; {retry 3 tines}
entityPtr := @wNTENaneg; {name to register}
verifyFlag := 1; {verify this nane}
END;

{Regi ster this socket.}
nyErr : = PRegi sterName(nyMPPPBPt r, FALSE)

{register this socket}
I F nyErr <> noErr THEN DoErr (nyErr);

{check and handl e error}

W TH nyDSPPBPt r * DO {set up dspOptions paraneters}
BEG N

i oOCRef Num : = dr vr Ref Num {ADSP driver ref nunt

csCode : = dspOptions;

ccbRef Num : = connRef Num {connection ref nunt

sendBl ocki ng : = bl ockFact; {quantum for data packet}

badSegMax : = O0; {use defaul t}

useCheckSum : = 0; {don't cal cul ate checksunt
END;

nyErr : = PBControl (ParnBl kPtr (myDSPPBPtr), FALSE)
{set options}
I F nyErr <> noErr THEN DoErr (nyErr);
{check and handl e error}

Using ADSP 5-19

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Pi ckASocket (myAddr Bl k) ; {routine using the PLookupNane }
{ function to pick a socket }
{ for the connection}

{Open a connection with the sel ected socket.}

W TH nmyDSPPBPt r * DO {set up dspQOpen paraneters}
BEG N
i oCRef Num : = drvr Ref Num {ADSP driver ref nuni
csCode : = dspQpen;
ccbRef Num : = connRef Num {connection ref nuni
renot eAddr ess : = nyAddr Bl k; {address of renote socket }
{ from PLookupNane function}
filterAddress : = nyAddrBl k; {address filter,specified }
{ socket address only}
ocMbde : = ocRequest; {open connection node}
oclnterval := 0; {use default retry interval}
ocMaxi mum : = 0; {use default retry nmaxi nmunt
END;

nyErr := PBControl (ParnBl kPtr(nmyDSPPBPtr), FALSE)
{open a connecti on}
I F nyErr <> noErr THEN DoErr (nyErr); {check and handl e error}

{The connection with the sel ected socket is open, so now send }
{ to the send queue exactly nyDataSi ze nunber of bytes.}

W TH nyDSPPBPt r * DO {set up dspWite paraneters}
BEG N
i oOCRef Num : = dr vr Ref Num {ADSP driver ref nunt
csCode : = dspWite;
ccbRef Num : = connRef Num {connection ref nunt
reqCount := nyDat aSi ze; {write this nunber of bytes}
dataPtr := nmyData2WitePtr; {pointer to send queue}
eom: = 1; {1 neans |l ast byte is }
{ 1 ogical end-of-nessage}
flush := 1; {1 nmeans send data now}
END;

nyErr : = PBControl (ParnBl kPtr (myDSPPBPtr), FALSE)
{send data to the renpte }
{ connection}

| F nyErr <> noErr THEN DoErr (nyErr);
{check and handl e error}

5-20 Using ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

{Now send an attention nessage to the renpte connection end.}

W TH nyDSPPBPt r * DO {set up dspAttention paraneters}
BEG N
i oCRef Num : = drvr Ref Num {ADSP driver ref nuni
csCode : = dspAttention
ccbRef Num : = connRef Num {connection ref nun
attnCode : = O; {user-defined attention code}
attnSi ze : = nyDat aSi ze; {length of attention nmessage}
attnbData : = nyAttnMsgPtr; {attention nmessage}
END;

nyErr := PBControl (ParnBl kPtr(myDSPPBPtr), FALSE)
| F nyErr <> noErr THEN DoErr (nyErr);
{check and handl e error}

{Now read fromthe receive queue exactly myDataSi ze nunber }
{ of bytes.}

W TH nyDSPPBPt r * DO {set up dspRead paraneters}
BEG N
i oCRef Num : = dr vr Ref Num {ADSP driver ref nunt
csCode : = dspRead;
ccbRef Num : = connRef Num {connection ref nun
reqCount := nyDat aSi ze; {read this nunmber of bytes}
dataPtr := nyDat a2ReadPtr; {pointer to read buffer}
END;

nyErr := PBControl (ParnBl kPtr(nmyDSPPBPtr), FALSE)
{read data fromthe renote }
{ connecti on}

| F nyErr <> noErr THEN DoErr (nyErr); {check and handl e error}
{We're finished with the connection, so renove it.}
W TH nyDSPPBPt r * DO {set up dspRenove paraneters}
BEG N

i oOCRef Num : = dr vr Ref Num {ADSP driver ref nunt

csCode : = dspRenove;

ccbRef Num : = connRef Num {connection ref nun}

abort := 0; {don't close until }

{ everything is sent and }
{ received}
END;

nyErr : = PBControl (ParnBl kPtr (myDSPPBPtr), FALSE)
{close and renove the }
{ connection}

| F nyErr <> noErr THEN DOErr (nyErr);

{check and handl e error}

Using ADSP 5-21

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

{You're finished with this connection, so rel ease the nenory.}
Di sposPtr(dspSendQPtr);

Di sposPtr (dspRecvQPtr);

Di sposPtr (dspAtt nBuf Ptr);

Di sposPtr (myDat a2ReadPtr) ;

Di sposPtr (nmyDat a2WitePtr);

Di sposPtr (nyAttnMsgPtr);

Di sposPtr (Ptr(nmyDSPPBPtr));

Di sposPtr (Ptr(myMPPPBPtT));

END; { MyADSP}

Creating and Using a Connection Listener

A connection listener is a special sort of ADSP connection end that cannot receive or
transmit data streams or attention messages. The sole function of a connection listener
is to wait passively to receive an open-connection request and to inform its client, the
connection server, when it receives one. The connection server can then accept or deny
the open-connection request. If it accepts the request, the connection server selects a
socket to use as a connection end, establishes a connection end on that socket, and sends
an acknowledgment and connection request back to the requesting connection end. The
connection server can use the same socket as it used for the connection listener, or it

can select a different socket as the connection end.

Use the following procedure to establish a connection listener and to use that connection
listener to open a connection with a remote connection end:

1. Use the Device Manager’s OpenDr i ver function to open the MPP driver and then
use the QpenDri ver function to open the .DSP driver. The OpenDr i ver function
returns the reference number for the .DSP driver. You must supply this reference
number each time you call the .DSP driver.

2. Allocate nonrelocatable memory for a connection control block, which is described
in “Connections, Connection Ends, and Connection States” on page 5-6. The CCB
is 242 bytes. A connection listener does not need send and receive queues or an
attention-message buffer. The memory that you allocate becomes the property of
ADSP when you call the dspCLI ni t routine to establish a connection listener. You
cannot write any data to this memory except by calling ADSP, and you must ensure
that the memory remains locked until you call the dspRenve routine to eliminate
the connection end.

3. Call the dspCLI ni t routine to establish a connection listener. You must provide a
pointer to the CCB.

If there is a specific socket that you want to use for the connection listener, you can
specify the socket number in the | ocal Socket parameter. If you want ADSP to
assign the socket for you, specify 0 for the | ocal Socket parameter. ADSP returns
the socket number when the dspCLI ni t routine completes execution.

5-22 Using ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

4. If you wish, you can use the NBP routines to add the name and address of your
connection listener to the node’s names table. See the chapter “Name-Binding
Protocol (NBP)” in this book for information on NBP.

5. Use the dspCLLi st en routine to cause the connection listener to wait for an open-
connection request. Because the dspCLLi st en routine does not complete execution
until it receives a connection request, you should call this routine asynchronously.
You can specify a value for the f i | t er Addr ess parameter to restrict the network
number, node ID, or socket number from which you will accept an open-connection
request.

When the dspCLLi st en routine receives an open-connection request that meets
the restrictions of the f i | t er Addr ess parameter, it returns a NOEr r result code

(if you executed the routine asynchronously, it places a noEr r result code in the

i OResul t parameter) and places values in the parameter block for the r enot eCl D,
renot eAddr ess, sendSeq, sendW ndow and at t nSendSeq parameters.

6. If you want to open the connection, call the dspl ni t routine to establish a connection
end. You can use any available socket on the node for the connection end, including
the socket that you used for the connection listener. Because a single socket can have
more than one CCB connected with it, the socket can function simultaneously as a
connection end and a connection listener.

You can check the address of the remote socket to determine if it meets your criteria for
a connection end. Although the fi | t er Addr ess parameter to the dspCLLi st en
routine provides some screening of socket addresses, it cannot check for network
number ranges, for example, or for a specific set of socket numbers. If for some reason
you want to deny the connection request, call the dspDeny routine, specifying the CCB
of the connection listener in the ccbRef Numparameter. Because the dspCLLi st en
routine completes execution when it receives an open-connection request, you must
return to step 5 to wait for another connection request.

7. Call the dspOpen routine to open the connection. Specify the value ocAccept for the
ocMode parameter and specify in the ccbRef Numparameter the reference number
of the CCB for the connection end that you want to use. When you call the dspQpen
routine, you must provide the values returned by the dspCLLi st en routine for
the r enot eCl D, r enpt eAddr ess, sendSeq, sendW ndow and at t nSendSeq
parameters.

You can poll the state field in the CCB to determine when the connection is open.
Alternatively, you can check the result code for the dspOpen routine when the routine
completes execution. If the routine returns the noEr r result code, then the connection
is open.

8. You can now send and receive data and attention messages over the connection, as
described in “Opening and Maintaining an ADSP Connection” beginning on page 5-13.
When you are ready to close the connection, you can use the dspCl ose or dspRenpve
routine, both of which are also described in the section “Creating and Using a
Connection Control Block.”

9. When you are finished using the connection listener, you can use the dspCLRenove
routine to eliminate it. Once you have called the dspCLRenpve routine, you can
release the memory you allocated for the connection listener’s CCB.

Using ADSP 5-23

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Listing 5-2 illustrates the use of ADSP to establish and use a connection listener. It opens
the .MPP and .DSP drivers and allocates memory for the CCB. Then it uses the

dspCLI ni t routine to establish a connection listener, uses NBP to register the name of
the connection end on the internet, and uses the dspCLLi st en routine to wait for a
connection request. When the routine receives a connection request, it calls the dspOpen
routine to complete the connection.

Listing 5-2 Using ADSP to establish and use a connection listener
VAR
dspCCBPt r: TPCCB
my DSPPBPt T : DSPPBPt r
my MPPPBPt T : MPPPBPt T ;
nmy NTENane: NanesTabl eEntry;
drvr Ref Num I nt eger;
nppRef Num I nt eger;
connRef Num I nt eger
myErr: CSErr;
BEG N

nyErr := OpenDriver('.MP , nppRef Nunj;
{open . MPP driver}
| F nmyErr <> noErr THEN DoErr (nyErr);
{check and handl e error}
nyErr := OpenDriver('.DSP , drvrRefNum;
{open .DSP driver}
| F nmyErr <> noErr THEN DoErr (nyErr);
{check and handl e error}
{All ocate menory for data buffers.}
dspCCBPtr : = TPCCB(NewPt r (Si zeOf (TRCCB))) ;
nmyDSPPBPt r : = DSPPBPt r (NewPt r (Si zeOf (DSPPar anBl ock))) ;
nyMPPPBPt r : = MPPPBPt r (NewPt r (Si zeOf (MPPPar anBl ock))) ;
W TH nyDSPPBPt r » DO {set up dspCLInit paraneters}
BEG N
i oCRef Num : = dr vr Ref Num {ADSP driver ref nunt
csCode : = dspCLlnit;
ccbPtr := dspCCBPtr; {pointer to CCB}
| ocal Socket := 0; {local socket numnber}
END;
nyErr : = PBControl (ParnBl kPtr (myDSPPBPtr), FALSE)
{establish a connection |istener}
I F nyErr <> noErr THEN DoErr (nyErr);
{check and handl e error}
connRef Num : = nyDSPPBPt r *. ccbRef Num
{save CCB ref numfor |ater}

5-24 Using ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

NBPSet NTE(@ryNTENane, ' The hject', 'The Type'
"*' nyDSPPBPt r~. | ocal Socket);

W TH nyMPPPBPt r~ DO

BEG N
interval := 7;
count := 3;
entityPtr := @wNTEnane;
verifyFlag : = 1,
END;

{set up NBP nanes table entry}
{set up PRegi st er Nane par anet er s}

{retransnit every 7*8=56 ticks }
{ and retry 3 tines}

{nanme to register}

{verify this nane}

myErr : = PRegi st er Name(nmyMPPPBPtr, FALSE)

{register this nane}

| F nyErr <> noErr THEN DoErr (nyErr);

W TH nyDSPPBPt r * DO

BEG N
i oCRef Num : = drvr Ref Num
csCode : = dspCLLi sten;

ccbRef Num : = connRef Num
filterAddress

END;

{check and handle error}

{set up dspCLLi sten paraneters}
{ADSP driver ref nuni

{connection ref nuni

: = Addr Bl ock(0);

{connect with anybody}

nyErr : = PBControl (ParnBl kPtr (myDSPPBPtr), TRUE)

VWHI LE nmyDSPPBPt r~. i oResult =

BEG N

{l'isten for connection requests}

1 DO

{Return control to user while waiting for a connection }

{ request.}
GoDoSonet hi ng;
END;

I F nyErr <> noErr THEN DoErr (nyErr);

W TH nyDSPPBPt r A DO

BEA N
i OCRef Num : = drvr Ref Num
csCode : = dsplnit;
ccbhPtr := @IspCCB
user Rout i ne
sendQ@Si ze : = gSi ze
sendQueue : = dspSendQPtr;
recvQsi ze : = gSi ze

recvQueue : = dspRecvQPtr;

Using ADSP

{check and handl e error}
{set up dsplnit paraneters}
{ADSP driver ref num

{pointer to CCB}

.= @wyConnecti onEvt User Rout i ne;

{size of send queue}
{send- queue buffer}
{size of receive queue}
{receive-queue buffer}

5-25

(4SAv) 10901014 Weans ereqd xreLaddy -

5-26

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

attnPtr := dspAttnBuf Ptr; {receive-attention buffer}
| ocal Socket := 0; {l et ADSP assign socket}
END;

dspCCB. nyA5 : = SetCurrent A5; {save A5 for the user routine}

{Establish a connection end.}
myErr := PBControl (ParnBl kPtr (nyDSPPBPtr), FALSE);
I F nyErr <> noErr THEN DoErr (nyErr);
{check and handl e error}
connRef Num : = nyDSPPBPt r . ccbRef Num
{save CCB ref numfor later}

{You received a connection request: now open a connection. }
{ The dspCLListen call has returned values into the }

{ renoteCl D, renoteAddress, sendSeq, sendW ndow, }

{ and attnSendSeq fields of the paraneter bl ock.}

W TH nmyDSPPBPt r * DO {set up dspQOpen paranet ers}
BEG N
i oCRef Num : = drvr Ref Num {ADSP driver ref nuni
csCode : = dspQpen;
ccbRef Num : = connRef Num {connection ref nuni

ocMode : = ocAccept; {open connection node}

oclnterval := 0; {use default retry interval}

ocMaxi mum : = 0; {use default retry naxi mnt
END;

myErr := PBControl (ParnBl kPtr (nyDSPPBPtr), FALSE);
{open a connecti on}
| F nyErr <> noErr THEN DoErr (nyErr)
{check and handl e error}
END; { MyCLADSP}

Writing a User Routine for Connection Events

When you execute the dspl ni t rout i ne, you can specify a pointer to a routine that
you provide (referred to as the user routine). Whenever an unsolicited connection event
occurs, ADSP sets a flag in the CCB and calls the user routine. The user routine must
clear the flag to acknowledge that it has read the flag field, and then it can respond to the
event in any manner you deem appropriate. The CCB flags are described in“The ADSP
Connection Control Block Record” beginning on page 5-35. The four following types

of unsolicited connection events set flags in the CCB:

= ADSP has been informed by the remote connection end that the remote connection
end is about to close the connection. An appropriate response might be to store a flag

Using ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

indicating that the connection end is about to close. When your application regains
control, it can then display a dialog box informing the user of this event and asking
whether the application should attempt to reconnect later.

= ADSP has determined that the remote connection end is not responding and so has
closed the connection. Your user routine can attempt to open a new connection
immediately. Alternatively, you can store a flag indicating that the connection has
closed, and when your application regains control, it can display a dialog box asking
the user whether to attempt to reconnect.

= ADSP has received an attention message from the remote connection end. Depending
on what you are using the attention-message mechanism for, you might want to read
the attention code in the at t nCode field of the CCB and the attention message
pointed to by the at t nPt r field of the CCB.

= ADSP has received a forward reset command from the remote client end. It has then
discarded all ADSP data not yet delivered, including the data in the receive queue of
the local client end, and has resynchronized the connection. Your response to this
event depends on the purpose for which you are using the forward reset mechanism.
You might want to resend the last data you have sent or inform the user of the event.

When ADSP calls your user routine, the CPU is in interrupt-processing mode and
register Al contains a pointer to the CCB of the connection end that generated the event.
You can examine the user Fl ags field of the CCB to determine what event caused the
interrupt, and you can examine the st at e field of the CCB to determine the current state
of the connection.

Because the CPU is set to interrupt-processing mode, your user routine must preserve

all registers other than A0, A1, D0, D1, and D2. Your routine must not make any direct

or indirect calls to the Memory Manager, and it cannot depend on handles to unlocked
blocks being valid. If you want to use any of your application’s global variables, you must
save the contents of the A5 register before using the variables, and you must restore the
A5 register before your routine terminates. Listing 5-1 and Listing 5-3 illustrate the use of
the CCB to store the pointer to your application’s global variables.

If you want to execute a routine each time an unsolicited connection event occurs but the
interrupt environment is too restrictive, you can specify a NI L pointer to the user routine
and periodically poll the user Fl ags field of the CCB.

WARNING

When an unsolicited connection event occurs, you must clear the bit in
the user Fl ags field by setting it to 0 or the connection will hang. To
ensure that you do not lose any attention messages, you must read any
attention messages into an internal buffer before you clear the bit in the
user Fl ags field. a

Listing 5-3 on page 5-28 shows the user routine called by Listing 5-1 on page 5-17. When
this routine is called, it first checks the CCB to determine the source of the interrupt

and then clears the bit in the user Fl ags field of the CCB. If the routine has received

an attention message, the user routine reads the message into an internal buffer before

it clears the f | ag bit. The definitions of procedures PushA5, Get My TRCCBAS5, and
PopA5 are shown in Listing 5-3 for your convenience. In a complete application these
procedures would be defined in the calling routine (see Listing 5-1 for an example).

Using ADSP 5-27

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Listing 5-3 An ADSP user routine

PROCEDURE
I NLI NE

PROCEDURE
I NLI NE

PRCOCEDURE
I NLI NE

PRCOCEDURE

BEG N
{The conn

PushAb; {moves current value of A5 onto stack}
$2F0D; {MOVE.L A5,-(SP)}
CGet My TRCCBAS; {retrieves A5 fromthe head of the TRCCB }
{ (pointed to by Al) and puts it in A5 register}
$2A69, S$FFFC; {MOVE. L -4(Al), A5}
PopA5; {restores A5 from stack}
$2A5F; {MOVE.L (SP)+, A5}
MyConnect i onEvt User Rout i ne;

ection received an unexpected connection event. Find }

{ out what kind and process accordingly.}

PushA5
Get WT

WTH d
BEG N
| F
I F
I F
| F

; {save the current A5}
RCCBA5; {set up A5 to point to your }
{ application's global variabl es}

spCCB. u DO

BAND(user Fl ags, eC osed) <> 0 THEN Tel | User |t sd osed,;
BAND(user Fl ags, eTearDown) <> 0 THEN Tel | User |t sBroken;
BAND(user Fl ags, eFwdReset) <> 0 THEN Tel | Userlt sReset;
BAND(user Fl ags, eAttention) <> 0 THEN

BEA N {the event is an attention nessage}

myAtt nCode : = AttnCode;
{get the attention code}
CopyAtt nMsg(AttnPtr, AttnSize, @wAttnData);
{copy the attention nessage into your buffer}
tenpFl ag : = userFl ags;
tenpCFl ag : = eAttention;
Bd r (Longl nt (tenpFl ag), tenpCFl ag);
{clear the flag}
user Fl ags : = tenpFl ag;
{Do sonething with the nessage.}

END;
gRecei vedAnEvent : = TRUE
END;
PopAS5 {restore the current A5}
END;
5-28 Using ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Using ASDSP

You can write an application that uses the AppleTalk Secure Data Stream Protocol
(ASDSP) to

= open a secure ASDSP connection (sdspQOpen)
» transmit encrypted data across a secure session (dSpW i t e using the encrypt flag)

» read data decrypted by ASDSP that was sent as encrypted across a secure session
(dspRead)

The initiator end of your ASDSP client application must call the AOCE Authentication
Manager to obtain credentials to pass on to ASDSP. ASDSP passes these credentials to
the recipient end of the client application and uses them to establish a secure session in
which the users of the client applications at both ends of the connection are positively
identified. See “About ASDSP” beginning on page 5-9 for more information about this
process. ASDSP client applications at either end of a connection can send data to each
other that ASDSP encrypts for transmission and then decrypts before delivering it to the
client at the receiving end.

An application that currently uses ADSP needs little modification to use ASDSP. To open
an ASDSP connection, the client application at each end must issue the secure data stream
protocol open routine (sdspOpen) instead of the standard open routine (dspOpen).

The sdspQpen routine uses a parameter block that, in addition to the standard ADSP
parameters required to open a connection, contains the identity and credentials used in
the challenge process; only the initiator end of the connection passes the credentials to
ASDSP as input parameter values. The initiator and the recipient ends of a session each
open the connection in a different manner:

» The initiator end of a session calls the sdspQOpen routine using the request mode to
direct ASDSP to open a connection with a specific socket.

s The recipient end of a session calls the sdspOpen routine in either passive mode or
accept mode. A recipient end of a connection can be either of the following:

o a specific socket that waits passively to receive an ASDSP connection request (the
connection end associated with the socket calls the sdspQpen routine with a value
of ocPassi ve for the ocMbde parameter)

o a connection listener that listens for connection requests and passes them on to a
connection server (the connection listener calls the sdspQpen routine with a value
of ocAccept for the ocMbde parameter, and the connection server accepts and
acknowledges receipt of a connection request)

You issue the sdspOpen routine by calling the Device Manager’s PBCont r ol function
and passing it a pointer to the DSP parameter block for ASDSP that holds all of the input
and output parameters for the call. The parameters that the sdspQOpen call requires
differ for the initiator and recipient ends of a connection. The next section describes how
to open an ASDSP connection and how to send encrypted data across it.

Using ASDSP 5-29

(4SAv) 10901014 Weans ereqd xreLaddy -

5-30

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Opening a Secure Connection

To open a secure ASDSP connection, both the initiator and the recipient must call the
sdspOpen routine after calling the dspl ni t routine and, optionally, the dspOpt i ons
routine. First this section describes how the initiator part of an application opens a
secure connection. Then it describes how the recipient end of an application opens

a secure connection.

From the Initiator's End

An initiator can send a request to open a secure session to

= a specific socket whose client application has opened a connection end to wait
passively for a connection request

= a connection listener whose function is to accept requests for secure connections and
pass those requests on to a connection server

The initiator makes either an AOCE Aut hTr adePr oxyFor Cr edent i al s call or an
AOCE Aut hGet Credent i al s call to the authentication server. It passes to the authenti-
cation server its own name and the name of the recipient and gets back the session key

and the credentials for the session. For an explanation of the calls that the initiator must
make to the Authentication Manager, see the chapter “Authentication Manager” in Inside
Macintosh: AOCE Application Programming Interfaces.

Through the sdspQpen call, the initiator passes the credentials to ASDSP to send to the
recipient. ASDSP decrypts the credentials and passes the decrypted credential informa-
tion to the recipient.

To open a secure ASDSP connection, the initiator performs the following procedure:

1. Determine if the Apple Open Collaboration Environment (AOCE) software is installed
by calling the Gest al t function. See the chapter “Introduction to AOCE” in Inside
Macintosh: AOCE Application Programming Interfaces for a description of the selector
values that you use.

2. Allocate memory for the required data structures identified in this step. The memory
belongs to ASDSP until the routine completes execution, after which you can either
release or reuse the memory. You must either allocate nonrelocatable memory or lock
the memory until the routine completes. See the chapter “Authentication Manager” in
Inside Macintosh: AOCE Application Programming Interfaces for a description of the
memory that you need to allocate for calls that you make to that interface. The data
structures that you need to allocate memory for are listed here:

o An ASDSP parameter block of type SDSPPar anBl ock. You pass a pointer to this
parameter block as the value of the par anBl ock parameter to the PBCont r ol
function. (See “The ASDSP Parameter Block” on page 5-41.)

o A workspace buffer that the sdspOpen routine uses internally whose size is equal to
sdspWor kSi ze. The memory for this buffer must be aligned on an even boundary.
You pass a pointer to this buffer as the value of the wor kspace parameter.

o Abuffer for the credentials retrieved from the authentication server and passed
to ASDSP.

o Abuffer for the session key retrieved from the authentication server and passed to
ASDSP. This is a data structure of type Aut hKey.

Using ASDSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

3. Call the Authentication Manager’s Aut hGet UTCTi ne function to get the universal
coordinated time (UTC). You base the credentials expiration time that you specify
as input to the Aut hGet Cr edent i al s function on the UTC. See the chapter
“Authentication Manager” for a description of the Aut hGet UTCTi ne function.

4. Obtain your (the initiator’s) identity and the recipient’s record ID. (You can use the
local identity or get a specific identity for the initiator.) You need to pass these values
to the authentication server to get the session key and credential block from the server.
See the chapter “Authentication Manager” for a discussion of identities and complete
instruction on how to get these values.

5. Call the Authentication Manager’s Aut hGet Cr edent i al s function or
Aut hTr adePr oxyFor Cr edent i al s function to get the credentials and the session
key. You use these values as input to the sdspQpen routine. See the chapter
“Authentication Manager” for information on the Aut hGet Cr edent i al s and
Aut hTr adePr oxyFor Cr edent i al s functions.

You pass the Aut hGet Cr edent i al s function or Aut hTr adePr oxyFor Or edent i al s
function the following values returned from the functions that you called in the
previous steps:

o The initiator’s identity.
o A pointer to a buffer containing the record ID for the recipient.

o The desired expiration time of the credentials. You use the expi r y parameter to
specify for how long you want the credentials to be valid. Credentials are valid for
at most eight hours after they are returned to the initiator by the server. You base
the expiration time on the UTC time returned by the Aut hGet UTCTi e function.

o The expected length of the credentials. A buffer three times the size of a packed
record ID is usually sufficient for credentials. The AOCE constant
kPackedRecor dl DMaxByt es specifies the size of a single packed record ID.

6. Call the sdspOpen routine to open a secure connection. To call the sdspOpen routine,
you call the Device Manager’s PBCont r ol function and specify sdspQOpen as the
value of the csCode parameter. The parameter block for the sdspOpen routine
includes fields also used for the standard dspOpen routine. In addition to these
parameters, you specify parameters used in the authentication process to establish
the secure connection.

The initiator application calls the sdspQpen routine with a value of ocRequest for
the ocMbde parameter to direct ASDSP to open a connection with a specific socket on
the AppleTalk internet. When you execute the sdspQpen routine in the ocRequest
mode, ASDSP sends an open-connection request to the address you specify.

If the socket to which you send the open-connection request is a connection listener,
the connection server that operates that connection listener can select any socket on
the internet to be the connection end that responds to the open-connection request. To
restrict the socket from which you will accept a response to your open-connection
request, specify a value for the f i | t er Addr ess parameter to the sdspOpen routine.

To use the ocRequest mode, you must know the complete internet address of the
remote socket, and the ASDSP client at that address must either be a connection
listener or have executed the sdspQpen routine in the ocPassi ve mode. You can use
the NBP routines to obtain a list of the names of objects on the internet and to
determine the internet address of a socket when you know its name. See the chapter
“Name-Binding Protocol (NBP)” in this book for information on the NBP routines.

Using ASDSP 5-31

(4SAv) 10901014 Weans ereqd xreLaddy -

5-32

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

In addition to the standard ADSP parameters required for a dspOpen call, the
initiator supplies the following input values to the sdspOpen call:

Parameter Value

secure To open a secure authenticated connection, pass a value
of TRUE. To open a normal, unauthenticated connection,
pass a value of FALSE.

sessi onKey A pointer to the encryption key returned from

the Aut hGet Cr edenti al s or
Aut hTr adePr oxyFor Cr edent i al s function.

credenti al sSi ze The value that the Aut hGet Cr edent i al s function or

the Aut hTr adePr oxyFor Cr edent i al s function returned
that specifies the length of the credentials.

credential s A pointer to the credentials that the Aut hGet Cr edenti al s

function or the Aut hTr adePr oxyFor Credent i al s
function returned.

wor kspace A pointer to the workspace buffer that you allocated, which

is for ASDSP’s internal use.

From the Recipient End

To open a secure ASDSP connection, the recipient performs the following procedure:

1. Allocate memory for the following data structures. The memory belongs to ASDSP
until the routine completes execution, after which you can either release or reuse the
memory. You must either allocate nonrelocatable memory or lock the memory until
the routine completes.

O

An ASDSP secure parameter block of type SDSPPar anBl ock. You pass a pointer to
this parameter block as the value of the par anBl ock parameter to the PBCont r ol
function. (See “The ASDSP Parameter Block” beginning on page 5-41.)

A workspace buffer that the sdspOpen routine uses internally whose size is equal
to sdspWor kSi ze. The memory for this buffer must be aligned on an even
boundary. You must pass a pointer to the buffer as the value of the wor kspace
parameter.

A data structure of type Aut hKey for the session key retrieved from the authentica-
tion server and passed to ASDSP. ASDSP breaks out from the credentials block the
session key encrypted in the recipient’s private key and returns the session key to
the recipient in the sessi onKey buffer.

A buffer for the record ID of the initiator that ASDSP returns to the recipient in
response to the recipient’s sdspOpen routine. You pass a pointer to this buffer as
the value of the i ni ti at or parameter. ASDSP breaks out the initiator’s record ID
from the credential block that the initiator passes to ASDSP and returns it to the
recipient. See the chapter “Authentication Manager” in Inside Macintosh: AOCE
Application Programming Interfaces for a description of how to create a maximum-
size record ID structure that is large enough to hold any record ID.

Abuffer for the record ID of the intermediary that ASDSP returns to the recipient if
an intermediary is found in the credentials. You pass a pointer to this buffer as the
value of the i nt er medi ary parameter. An intermediary is a proxy that has used
the Aut hTr adePr oxyFor Cr edent i al s function to obtain the credentials used in

Using ASDSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

the authentication process. See the chapter “Authentication Manager” in Inside
Macintosh: AOCE Application Programming Interfaces for a discussion of the use of an
intermediary and the Aut hTr adePr oxyFor Cr edent i al s function and for a
description of how to create a maximum-size record ID structure that is large
enough to hold any record ID.

2. Call the sdspOpen routine to open a secure connection. To call the sdspQpen routine,
you call the Device Manager’s PBCont r ol function and specify sdspOpen as the
value of the csCode parameter. The parameter block for the sdspOpen routine
includes fields also used for the standard dspQpen routine. In addition to these
parameters, you specify parameters used in the authentication process to establish
the secure connection.

A recipient end of a connection can be either a connection listener that listens for
connection requests and passes them on to a connection server or a socket that waits
passively to receive a connection request.

If the recipient is a connection listener, it calls the sdspOpen routine with a

value of ocAccept for the ocMbde parameter. The connection server accepts

and acknowledges receipt of a connection request. When you call the sdspQpen
routine, you must provide the values returned by the dspCLLi st en routine

for the r enot eCl D, r enpt eAddr ess, sendSeq, sendW ndow and at t nSendSeq
parameters. You can poll the st at e field in the CCB to determine when the
connection is open. Alternatively, you can check the result code for the sdspQpen
routine when the routine completes execution. If the routine returns the noEr r
result code, then the connection is open.

If the recipient is a connection end associated with a passive socket that calls the
sdspQOpen routine with a value of ocPassi ve for the ocMbde parameter, use the
ocPassi ve mode when you expect to receive an open-connection request from a
remote socket. You can specify a value for the f i | t er Addr ess parameter to restrict
the network number, node ID, or socket number from which you will accept an
open-connection request.

You can poll the state field in the CCB to determine when the connection end is
waiting to receive an open-connection request, when the connection end is waiting to
receive an acknowledgment of an open-connection request, and when the connection
is open. See the section “The ADSP Connection Control Block Record” beginning on
page 5-35 for a description of the CCB fields. Alternatively, you can check the result
code for the dspQpen routine when the routine completes execution. If the routine
returns the NOEr r result code, then the connection is open.

In addition to the standard ADSP parameters required for a dspQpen call, the
recipient supplies the following input values to the sdspOpen call:

Parameter Value

sessi onKey A pointer to a data structure of type Aut hKey, which you
allocated. ASDSP copies the session key into this buffer if
an authenticated connection was successfully opened.

wor kspace A pointer to the workspace buffer that you allocated, which is
for ASDSP’s internal use.
reci pi ent The identity of the recipient.
continued

Using ASDSP 5-33

(4SAv) 10901014 Weans ereqd xreLaddy -

5-34

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Parameter Value

initiator A pointer to a maximum-size record ID. ASDSP copies the
initiator’s record ID into this structure if an authenticated
connection was successfully opened.

i ntermedi ary A pointer to a maximum-size record ID. ASDSP copies the
intermediary’s record ID into this structure if an authenticated
connection was successfully opened and an intermediary was
used to obtain the credentials used to authenticate the call.

If a secure connection was successfully opened, ASDSP returns the following values:

Parameter Value

i ssueTi ne The time when the credentials were issued. ASDSP copies
this value from the credentials.

expiry The time when the credentials expire. ASDSP copies this
value from the credentials.

sessi onKey The encryption key for the session. ASDSP copies this value
from the credentials.

initiator A pointer to a maximum-size record ID structure. If an
authenticated connection was successfully opened, this
structure holds the initiator’s record ID.

hasl nt er nedi ary A flag that is set to TRUE if an intermediary was used to
obtain the credentials.

i nternedi ary A pointer to a maximum-size record ID. If an authentication
connection was successfully opened and an intermediary
was used to obtain the credentials, this structure holds the
intermediary’s record ID.

Sending Encrypted Data Across a Secure Connection

After a secure connection is established, both ends can send encrypted data over the
session. ASDSP client applications use the dspW i t e routine to send data, encrypted
or not, over a secure connection. You can turn the encryption feature on or off on a
message-by-message basis by setting one flag to direct ASDSP to encrypt the data and
setting another flag to terminate the message.

To set these flags, you use the bits of the end-of-message (eom) field; this field is part of
the i oPar ams variant record of the DSP parameter block that you pass to the dspWite
routine. For secure connections, the eomfield comprises these two single-bit flags instead
of a zero-nonzero byte. You can use the dspEncr ypt Mask and dspEOMVask masks to
set these flags, or you can use the dspEncr ypt Bi t or dSpEOVBI t constant.

Note
Apart from the dspW i t e routine’s eomparameter, the interface to
ADSP remains unchanged in regard to encryption. O

The encryption process is transparent to the client application that receives the data;
ASDSP determines if the received information is encrypted, and, if so, it decrypts the
byte stream before copying the data to the read buffer specified by the dspRead routine.

Using ASDSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

To write data that ASDSP encrypts and then transmits or to terminate data encryption,
you call the dspW i t e routine using the Device Manager’s PBCont r ol function.

= Set the encrypt bit of the eomfield (bit 1) of the DSP parameter block. To set the
encrypt bit, you use the dspEncr ypt Mask mask or the dspEncr ypt Bi t constant.
Note that ASDSP checks this flag on the first write of the connection or the first write
following a write for which the end-of-message flag (bit 0 of the eomfield) is set.

= Set the end-of-message bit (bit 0) of the eomfield to terminate the encrypted message.
To set the end-of-message bit, you use the dspEOMVask mask or the dspEOVBI t
constant.

If you want to encrypt all messages, you can simply set the encrypt bit on all
dspWi t e calls.

ADSP Reference

This section describes the data structures and routines that are specific to ADSP and
to its secure version, ASDSP. The “Data Structures” section shows the Pascal data
structures for

= the ADSP connection control block

= the address block record

= the DSP parameter block

= the ASDSP version of the DSP parameter block
» the TRSecur ePar ans record

The “Routines” section describes routines for setting up and tearing down an ADSP
or an ASDSP (secure) connection, setting up and tearing down an ADSP connection
listener, and maintaining an ADSP connection over which to send and receive data
and enable encryption of the data to be sent.

Data Structures

This section describes the connection control block that you allocate for use by ADSP in
maintaining the state of a connection end and the DSP parameter block that you use to
specify input parameters for and receive output parameters from an ADSP routine. It
also describes the address block record that you use to specify the remote connection
end’s AppleTalk internet address.

The ADSP Connection Control Block Record

The connection control block (CCB) data structure is a record of type TRCCB that consists
of 242 bytes. ADSP uses the CCB to store state information about the connection end.
You allocate a nonrelocatable block of memory for this data structure when you create a

ADSP Reference 5-35

(4SAv) 10901014 Weans ereqd xreLaddy -

5-36

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

connection end. You may read the fields in the CCB to obtain information about the
connection end, but you are not allowed to write to any of the fields except one, the

user Fl ags field.

TYPE TRCCB =
PACKED RECORD
ccbLi nk: TPCCB; {l'ink to next CCB}
ref Num I nt eger; {reference nunber}
state: I nt eger; {state of the connection end}
user Fl ags: Byt e; {user flags for connection}
| ocal Socket : Byt e; {l ocal socket nunber}
renot eAddr ess: AddrBl ock; {renote end internet address}
att nCode: I nt eger; {attention code received}
attnSi ze: I nt eger; {size of attention data}
attnPtr: Ptr; {pointer to attention data}
reserved: PACKED ARRAY[1..220] OF Byte;
{reserved for use by ADSP}
END;

Field descriptions
ccbLi nk
ref Num

state

ADSP Reference

A pointer to the next CCB. This field is for use by ADSP only.

The reference number of the CCB. This number is assigned by
ADSP when you establish the connection end.

The state of the connection end, as follows:

State Value Meaning

sLi stening 1 The socket is a connection listener—
that is, a socket that accepts ADSP
requests to open connections and
passes them on to a socket client. A
connection listening socket passes
the open-connection request on to a
routine that can establish the connec-
tion on any socket. The connection
listening state is ordinarily used only
by connection servers.

sPassi ve 2 The socket client is inactive but capable
of accepting an ADSP request to open
a connection. Unlike a connection
listening socket, a socket client in the
sPassi ve state can accept an open-
connection request only to establish
itself as a connection end.

sQpeni ng 3 The socket client has sent an
open-connection request and is waiting
for acknowledgment.

sOpen 4 The connection is open.

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

user Fl ags

| ocal Socket

r enot eAddr ess

ADSP Reference

State Value Meaning

sd osi ng 5 The socket client has requested that
ADSP close the connection, and ADSP
is sending data or waiting for acknowl-
edgment of data it has sent before
closing the connection.

sCl osed 6 The connection is closed.

Flags that indicate an unsolicited connection event has occurred. An
unsolicited connection event is an event initiated by ADSP or the
remote connection end that is not in response to any ADSP routine
that you executed.

Each time an unsolicited connection event occurs, ADSP sets a flag
in the user Fl ags field of the CCB and calls the routine you
specified in the user Rout i ne parameter to the dspl ni t routine
(if any). The user routine must read the user Fl ags field and then
clear the flag to 0. ADSP cannot notify your routine of future events
unless you clear the flag after each event.

ADSP recognizes four types of unsolicited connection events, one
corresponding to each of the flags in this field. The events and flags
are defined as follows, where bit 7 is the most significant bit:

Flag
Event bit Meaning
ed osed 7 ADSP has been informed by the
remote connection end that the remote
connection end has closed the
connection.

eTear Down 6 ADSP has determined that the remote
connection end is not responding and
so has closed the connection.

eAttention 5 ADSP has received an attention
message from the remote connection
end.

eFwdReset 4 ADSP has received a forward reset
command from the remote connection
end, has discarded all ADSP data not
yet delivered—including the data in
the local client end’s receive queue—
and has resynchronized the
connection.

None 3-0 Reserved.

The socket number through which DDP transmits and receives the
ADSP packets.

The AppleTalk internet address of the socket used by the remote
connection end.

5-37

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

at t nCode The attention code received by ADSP when the remote connection
end sends an attention message.

attnSi ze The size of the attention message received by ADSP when the
remote connection end sends an attention message.

attnPtr A pointer to a buffer containing the attention message received by
ADSP from the remote connection end.

reserved A data buffer reserved for use by ADSP.

The Address Block Record

The address block record defines a data structure of Addr Bl ock type. ADSP routines
use this data type to specify the AppleTalk internet socket address of the remote
connection end in the CCB. You can use NBP to get the address of an application that

is registered with NBP. See the chapter “Name-Binding Protocol (NBP)” in this book for
more information. ATP functions also use this data type to specify AppleTalk internet
socket addresses.

TYPE Addr Bl ock =
PACKED RECORD

aNet : I nt eger; {networ k nunber}

aNode: Byt e; {node | D}

aSocket : Byt e; {socket nunber}
END;

Field descriptions

aNet The network number to which the node belongs that is running the
ADSP or ATP client application whose address you are specifying.
aNode The node ID of the machine running the ADSP or ATP client
application whose address you are specifying.
aSocket The number of the socket used for the ADSP or ATP client
application.
The DSP Parameter Block

The ADSP routines, which you execute by calling the Device Manager’s PBCont r ol
function, require a pointer to a DSP parameter block that holds all of the input and
output values associated with the routine. The DSP parameter block contains variant
records used by particular routines. The DSPPar anBl ock data type defines the DSP
parameter block.

This section defines the fields that are common to all ADSP routines that use the DSP
parameter block. The fields that are used for specific routines only are defined in the
descriptions of the routines to which they apply. The reserved fields, which are used
internally by the .DSP driver or not at all, are not defined.

5-38 ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

TYPE DSPPar anBl ock

PACKED RECORD

gLi nk: QEl enPtr; {reserved}
gType: I nt eger; {reserved}
i oTr ap: I nt eger; {reserved}
i oCrdAddr : Ptr; {reserved}
i oConpl etion: ProcPtr; {conpl etion routine}
i OResul t: OSErr; {result code}
i oNamePtr: StringPtr; {reserved}
i oVRef Num I nt eger; {reserved}
i OCRef Num I nt eger; {driver reference nunber}
csCode: I nt eger; {primary comrand code}
gSt at us: Longl nt; {reserved}
ccbRef Num I nt eger; {CCB reference nunber}
CASE | nteger OF
dsplnit, dspCLInit:
(ccbPtr: TPCCB; {pointer to CCB}
user Rout i ne: ProcPtr; {pointer to user routine}
sendQsSi ze: I nt eger; {size of send queue}
sendQueue: Ptr; {pointer to send queue}
recvQsi ze: I nt eger; {size of receive queue}
recvQueue: Ptr; {pointer to receive queue}
attnPtr: Ptr; {pointer to attention-nessage }
{ buffer}
| ocal Socket : Byt e; {local socket nunber}
fillerl: Byt e); {filler for proper alignnent}
dspOpen, dspCLLi sten, dspCLDeny:
(1 ocal Cl D I nt eger; {local connection |D}
r enot eCl D: I nt eger; {renpote connection | D}
renot eAddr ess: Addr Bl ock; {renote internet address}
filter Address: AddrBl ock; {address filter}
sendSeq: Longl nt ; {send sequence nunber}
sendW ndow: I nt eger; {size of renmote buffer}
recvSeq: Longl nt; {recei ve sequence nunber}
at t nSendSeq: Longl nt ; {attention send seq nunber}
att nRecvSeq: Longl nt; {attention receive seq nunt
ocMode: Byt e; {connecti on- openi ng node}
oclnterval : Byt e; {interval bet. open requests}
ocMaxi mum Byt e; {retries of open-conn req}
filler2: Byte); {filler for proper alignnment}
dspC ose, dspRenpve
(abort: Byt e; {abort send requests}
filler3: Byte); {filler for proper alignnment}

ADSP Reference 5-39

(4SAv) 10901014 Weans ereqd xreLaddy -

5-40

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

dspSt at us:

(st at usCCB: TPCCB; {pointer to CCB}

sendQ@endi ng: | nt eger; {bytes waiting in send queue}

sendQFr ee: I nt eger; {avai | abl e send-queue buffer}

recvQPendi ng: I nteger; {bytes in receive queue}

recvQrr ee: I nt eger); {avail receive-queue buffer}
dspRead, dspWite:

(reqCount: I nt eger; {request ed nunber of bytes}

act Count : I nt eger; {actual nunber of bytes}

dat aPtr: Ptr; {pointer to data buffer}

eom Byt e; {1 if end of message}

flush: Byt e); {1 to send data now}
dspAttention:

(at t nCode: I nt eger; {client attention code}

attnSi ze: I nt eger; {size of attention data}

att nDat a: Ptr; {pointer to attention data}

attnlnterval: Byte; {reserved}

fillerd4: Byt e); {filler for proper alignment}
dspOpti ons:

(sendBl ocki ng: Integer; {send- bl ocki ng threshol d}

sendTi ner: Byt e; {reserved}

rtntTinmer: Byt e; {reserved}

badSeqMax: Byt e; {retransmt advice threshol d}

useCheckSum Byt e); {DDP checksum for packet s}
dspNewCl D:

(newCl D: I nt eger); {new connection |D}
END;

Field descriptions
i oConpl etion

i oResul t

ADSP Reference

A pointer to a completion routine that you can provide; the Device
Manager calls your completion routine when it completes execution
of the PBCont r ol function, if you execute PBCont r ol asynchro-
nously and you specify a pointer to the routine as the value of this
field. Specify NI L for this field if you do not wish to provide a
completion routine. If you execute a function synchronously,
AppleTalk ignores the i oConpl et i on field. For information about
completion routines, see the chapter “Introduction to AppleTalk” in
this book.

The result of the function. If you call the routine asynchronously,
the Device Manager sets this field to 1 as soon as you call the
routine and it changes the field to the actual result code when the
routine completes execution.

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

i oCRef Num

csCode

gSt at us
ccbRef Num

The ASDSP Parameter Block

The driver reference number that is returned by the QpenDri ver
function. You must specify this number every time you call the
.DSP driver.

The command code for the ADSP routine to be executed. You must
fill in this field before calling the PBCont r ol function. You use the
following constants as values for this field:

csCode command Action

dsplnit Create a new connection end
dspRenove Remove a connection end
dspQOpen Open a connection

dspd ose Close a connection

dspCLI ni t Create a connection listener
dspCLRenpve Remove a connection listener
dspCLLi sten Post a listener request
dspCLDeny Deny an open-connection request
dspSt at us Get status of connection end
dspRead Read data from the connection
dspWite Write data on the connection
dspAttention Send an attention message
dspOpt i ons Set connection end options
dspReset Forward reset the connection
dspNewCl D Generate a CID for a connection end

This field is reserved for use by ADSP.

The reference number of the connection control block (CCB). ADSP
returns the CCB reference number in response to the dspl ni t
routine. You must specify this number as a parameter to every .DSP
driver routine you call subsequently.

To open an ASDSP connection, the client application at each end must call the Device
Manager’s PBCont r ol function with a command code that specifies the ASDSP open
routine (sdspOpen). This section describes the ASDSP parameter block whose pointer
you pass to PBCont r ol to execute the sdspOpen routine. The ASDSP parameter block
contains fields that carry the input and output parameters associated with the function.
The SDSPPar anBl ock data type defines the ASDSP parameter block.

For a description of the fields that are common to both the DSP and ASDSP parameter
blocks and that are used in exactly the same way, see “The DSP Parameter Block”
beginning on page 5-38. For a description of the fields that are particular to the
sdspOpen routine, see “sdspOpen” beginning on page 5-54.

ADSP Reference

5-41

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

SDSPPar anBl ock =
PACKED RECORD
CASE | NTEGER OF

1. (dspParanBl ock:

2: (qLink:
qType:

i oTr ap:

oCndAddr :

oResul t:
oNamePtr:
oVRef Num
oCRef Num
csCode:
gSt at us:
ccbRef Num

secur ePar ans:

END;

oConpl et i on:

DSPPar anBl ock) ;
CEl enPtr;
I nt eger;
I nt eger;
Ptr;
Prochtr;
OSErr;
StringPtr;
I nt eger;
I nt eger;
I nt eger;
Longl nt ;
I nt eger;
TRSecur ePar ans) ;

SDSPPBPt r = ~SDSPPar anBl ock;

Field descriptions

csCode

secur ePar ans

The command code for the ASDSP routine to be executed. You must
fill in this field before calling the PBCont r ol function. To call the
sdspQpen routine to open a secure connection, you specify the

{reserved}

{reserved}

{reserved}

{reserved}

{pointer to conpletion routine}
{routine result}
{reserved}

{reserved}

{ ASDSP dri ver refNun}
{ASDSP driver control
{reserved}
{connection end refNun}
{dspOpenSecur e}

code}

constant sdspQpen as the value of this parameter.

A record of type TRSecur ePar ans that contains the additional

parameters required to open a secure ASDSP session.

The TRSecureParams Record

The ASDSP parameter block is a variant parameter block that includes a field that is a
record of type TRSecur ePar anms, which defines the additional parameters required for
an ASDSP session. This section shows the declaration for the TRSecur ePar ans record.
The routine description “sdspOpen” beginning on page 5-54 includes the field definitions

for the TRSecur ePar ans record.

The TRSecur ePar ans record is defined as follows:

TYPE TRSecur ePar ans

PACKED RECORD
| ocal Cl D
r enot eCl D:
r enot eAddr ess:
filterAddress:
sendSeq:

I nt eger;
I nt eger;
Addr Bl ock;
Addr Bl ock;
Longi nt;

5-42 ADSP Reference

{l ocal connection |D}
{renote connection |D}
{address of renote end}
{address filter}

{local send sequence nunber}

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

sendW ndow:
recvSeq:

at t nSendSeq:
att nRecvSeq:
ocMode:
oclnterval :

ocMaxi mum

secure:

sessi onKey:
credenti al sSi ze:
credenti al s:

wor kspace:
reci pi ent:

i ssueTi ne:
expiry:
initiator:

hasl nt er medi ary:

i nternediary:

END;

Routines

I nt eger;
Longl nt;
Longl nt ;
Longl nt;
Byt e;
Byt e;

Byt e;

Bool ean

Aut hKeyPt r;
Longl nt ;
Ptr;

Ptr;

Aut hl dentity;
UTCTi ne;
UTCTi re;
Recordl DPt r;

Bool ean

Recordl DPt r;

{send wi ndow si ze}

{recei ve sequence nunber}

{attention send sequence nunber}
{attention recei ve sequence nunber}
{open connection node}

{open connection request retry }

{ interval}

{open connection request retry }

{ maxi mun

{for initiator, TRUE if session is

{ authenticated }

{for recipient, TRUE if session was }
{ authenti cat ed}

{encryption key for session}

{length of credenti al s}

{pointer to credential s}

{pointer to workspace for }

{ connection. Align on even boundary }
{ and length = sdspWrkSi ze}
{identity of recipient or initiator }
{ if active node}

{tinme when credentials were issued}
{time when credentials expire}
{Recordl D of initiator returned in }
{ buffer pointed to by this field}
{set if credentials has an }

{ internediary}

{Recordl D of internmediary returned }
{ here}

This section describes the ADSP and ASDSP routines that you use to

» establish and terminate an ADSP connection

= establish a secure (ASDSP) connection

» establish and terminate an ADSP connection listener

= maintain an ADSP connection, including sending and receiving data across an ADSP
or ASDSP connection and enabling encryption of the data to be sent

ADSP Reference

5-43

(4SAv) 10901014 Weans ereqd xreLaddy -

DESCRIPTION

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

You use the Device Manager’s PBCont r ol function for all of the ADSP and ASDSP
routine calls.

FUNCTI ON PBControl (paranBl ock: ParnBl kPtr;
async: Bool ean): OSErr;

par amBl ock

A pointer to the DSP parameter block that the PBCont r ol function uses
for DSP routines.

async A Boolean that specifies whether the function is to execute synchronously
or asynchronously. Set the async parameter to TRUE to execute the
function asynchronously.

All of the ADSP routines are implemented through a call to the PBCont r ol function.
The PBCont r ol function takes a pointer to a parameter block and a Boolean value that
specifies the mode in which the function is to be executed. You use the DSP parameter
block for all ADSP calls.

The parameter block includes a field, csCode, in which you specify the routine selector
for the particular routine to be executed; you must specify a value for this field. Each
ADSP routine may use different fields of the DSP parameter block for parameters
specific to that routine. The description of a function in this section includes the specific
parameters used for that function. See the section “The DSP Parameter Block” beginning
on page 5-38 for the complete DSP parameter block data structure.

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Arrow Meaning
- Input

- Output
- Both

Establishing and Terminating an ADSP Connection

5-44

You can use the routines described in this section to

= establish and initialize a connection end

» set the values for parameters that control the behavior of a connection end
= open an ADSP or ASDSP connection

= assign an identification number to a connection end

= close a connection end

= eliminate a connection end

ADSP Reference

dsplnit

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

The dspl ni t routine establishes a connection end, that is, it assigns a specific socket for
the ADSP connection end to use and initializes the variables that ADSP uses to maintain
the connection. You use the PBCont r ol function to call the dspl ni t routine. See
“Routines” beginning on page 5-43 for a description of the PBCont r ol function.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t OSErr The function result.

- i oCRef Num | nt eger The driver reference number.

- csCode | nt eger Always dspl ni t for this function.

- ccbRef Num | nt eger The CCB reference number.

- ccbPtr TPCCB A pointer to the CCB.

- user Rout i ne ProcPtr A pointer to a routine to call on
connection events.

- sendQSi ze I nt eger The size in bytes of the send queue.

. sendQueue Ptr A pointer to the send queue.

- recvQsi ze Ptr The size in bytes of the receive queue.

- recvQueue Ptr A pointer to the receive queue.

. attnPtr Ptr A pointer to the buffer for incoming

attention messages.

- | ocal Socket Byt e The DDP socket number for this

Field descriptions
csCode
ccbRef Num

ccbPtr

user Rout i ne

sendQSi ze

sendQueue

ADSP Reference

connection end.

The routine selector, always equal to dspl ni t for this routine.

The connection control block (CCB) reference number. The dspl ni t
routine returns the CCB reference number for this connection end
as the value of the ccbRef Numparameter. You must provide this
number in all subsequent calls to this connection end.

A pointer to the CCB that you allocated to be used by this connection
end. The CCB is 242 bytes in size and is described in “The ADSP
Connection Control Block Record” beginning on page 5-35. See also
“Creating and Using a Connection Control Block” on page 5-12.

A pointer to a routine that ADSP is to call each time the connection
end receives an unsolicited connection event. Specify NI L for this
parameter if you do not want to supply a user routine. Connection
events and user routines are discussed in “Writing a User Routine
for Connection Events” beginning on page 5-26.

The size in bytes of the send queue. A queue size of 600 bytes should
work well for most applications. If you are using ADSP to send a
continuous flow of data, a larger data buffer improves performance.
If your application is sending the user’s keystrokes, a smaller buffer
should be adequate. The constant m nDSPQueueSi ze indicates the
minimum queue size that you can use.

A pointer to the send queue that you allocated.

5-45

(4SAv) 10901014 Weans ereqd xreLaddy -

DESCRIPTION

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

recvQsi ze The size in bytes of the receive queue. A queue size of 600 bytes
should work well for most applications. If you are using ADSP to
receive a continuous flow of data, a larger data buffer improves
performance. If your application is receiving a user’s keystrokes, a
smaller buffer should be adequate. The constant ni nDSPQueueSi ze
indicates the minimum queue size that you can use.

recvQueue A pointer to the receive queue that you allocated.

attnPtr A pointer to the attention-message buffer that you allocated. The
attention-message buffer must be the size of the constant
attnBuf Si ze.

| ocal Socket The DDP socket number of the socket that you want ADSP to use
for this connection end. Specify 0 for this parameter to cause ADSP
to assign the socket; in this case, ADSP returns the socket number
when the dspl ni t routine completes execution.

The dspl ni t routine creates and initializes a connection end. The dspl ni t routine
does not open the connection end or establish a connection with a remote connection
end; you must follow the dspl ni t routine with the dspOpen routine to perform
those tasks.

When you send bytes to a remote connection end, ADSP stores the bytes in a buffer
called the send queue. Until the remote connection end acknowledges their receipt, ADSP
keeps the bytes you sent in the send queue so that they are available to be retransmitted
if necessary. When the local connection end receives bytes, it stores them in a buffer
called the receive quene until you read them.

You must allocate memory for the send (sendQueue) and receive (r ecvQSi ze) queues
and for a buffer (at t nPt r) that holds incoming attention messages. You must also
allocate a nonrelocatable block of memory (ccbPt r) for the CCB for this connection end.

SPECIAL CONSIDERATIONS

You must allocate nonrelocatable memory for the CCB, the send queue, the receive
queue, and the attention-message buffer, and ensure that the memory remains locked
until you explicitly remove the connection end by calling the dspRenpve routine. Do
not write any data to this memory except by calling ADSP routines.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

5-46

To execute the dspl ni t routine from assembly language, call the _Cont r ol trap macro
with a value of dspl ni t in the csCode field of the parameter block.

noErr 0 No error
ddpSkt Er r -91 Error opening DDP socket
er r DSPQueuesSi ze -1274 Send or receive queue is too small

ADSP Reference

dspOptions

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

The dspOpt i ons routine allows you to set values for several parameters that affect
the behavior of the local connection end. You use the PBCont r ol function to call the
dspOpt i ons routine. See “Routines” on page 5-43 for a description of the PBCont r ol

function.

Parameter block

- i oConpl eti on ProcPtr A pointer to a completion routine.

- i oResul t CSErr The function result.

. i oCRef Num | nt eger The driver reference number.

- csCode I nt eger Always dspOpt i ons for this function.
. ccbRef Num | nt eger The CCB reference number.

. sendBl ocki ng | nt eger The send-blocking threshold.

. badSeqMax Byt e The threshold to send retransmit advice.
- useCheckSum Byte A DDP checksum flag.

Field descriptions
csCode

ccbRef Num

sendBl ocki ng

badSeqMax

ADSP Reference

The routine selector, always equal to dspOpt i ons for this routine.

The connection control block (CCB) reference number that the
dspl ni t routine returned.

The maximum number of bytes that may accumulate in the send
queue before ADSP sends a packet to the remote connection end.
ADSP sends a packet before the maximum number of bytes
accumulates if the period specified by the send timer expires, if
you execute the dspW i t e routine with the flush parameter set
to 1, or if a connection event requires that the local connection end
send an acknowledgment packet to the remote connection end.

You can set the sendBl ocki ng parameter to any value from

1 byte to the maximum size of a packet (572 bytes). If you set the
sendBl ocki ng parameter to 0, the current value for this parameter
is not changed. The default value for the sendBIl ocki ng parameter
is 16 bytes.

The maximum number of out-of-sequence data packets that the
local connection end can receive before requesting the remote
connection end to retransmit the missing data. Because a connection
end does not acknowledge the receipt of a data packet received out
of sequence, the retransmit timer of the remote connection end will
expire eventually and the connection end will retransmit the data.
The badSeqMax parameter allows you to cause the data to be
retransmitted before the retransmit timer of the remote connection
end has expired.

You can set the badSeqMax parameter to any value from 1 to 255.

If you set the badSeqMax parameter to 0, the current value for

this parameter is not changed. The default value for the badSeqMax
parameter is 3.

5-47

(4SAv) 10901014 Weans ereqd xreLaddy -

DESCRIPTION

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

useCheckSum A flag specifying whether DDP should compute a checksum and
include it in each packet that it sends to the remote connection end.
Set this parameter to 1 if you want DDP to use checksums or to 0
if you do not want DDP to use checksums. The default value for
useCheckSumis 0.
ADSP cannot include a checksum in a packet that has a short DDP
header—that is, a packet being sent over LocalTalk to a remote
socket that is on the same cable as the local socket. Note that the
useCheck Sumparameter affects only whether ADSP includes a
checksum in a packet that it is sending. If ADSP receives a packet
that includes a checksum, it validates the checksum regardless of
the setting of the useCheckSumparameter.

The dspOpt i ons routine lets you set values that determine the behavior of a connection
end, such as the blocking factor, which is maximum number of bytes that should
accumulate in the connection end’s send queue before ADSP sends a packet to the
remote connection end, the maximum number of out-of-sequence packets received by
the connection end before ADSP sends a request for the missing packets, and whether or
not DDP should use checksums for all the packets that it transmits. You can set the
options for any established connection end, whether or not the connection end is open.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

dspOpen

To execute the dspQpt i ons routine from assembly language, call the _Cont r ol trap
macro with a value of dspOpt i ons in the csCode field of the parameter block.

noErr 0 No error
err Ref Num -1280 Bad connection reference number

Use the dspl ni t routine, described on page 5-45, to return the connection control block
(CCB) reference number.

5-48

The dspOpen routine opens a connection end. You can open a connection end in request
mode, passive mode, accept mode, or establish mode. You use the PBCont r ol function
to call the dspQpen routine. See “Routines” on page 5-43 for a description of the

PBCont r ol function.

ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Parameter block

i oConpl eti on ProcPtr
i oResul t OSEr r

i 0CRef Num I nt eger
csCode I nt eger
ccbRef Num I nt eger
| ocal CI D I nt eger
renot eCl D I nt eger

r enot eAddr ess Addr Bl ock
filter Address Addr Bl ock

sendSeq Longl nt
sendW ndow I nt eger
recvSeq Longl nt
att nSendSeq Longl nt
at t nRecvSeq Longl nt
ocMode Byt e
ocl nterval Byt e
ocMaxi mum Byt e

A pointer to completion routine.

The function result.

The driver reference number.
Always dspQOpen for this function.
The CCB reference number.

The ID of this connection end.

The ID of remote connection end.

A remote internet address.
A filter for open-connection requests.

The initial send sequence number.

The initial size of remote receive queue.
The initial receive sequence number.
The attention send sequence number.
The attention receive sequence number.
The connection-opening mode.

The interval between open requests.
The number of open-connection

request retries.

The use of parameters by the dspQpen routine depends on the mode in which the
routine is executed, as follows:

ocRequest

- ioConpletion
~ JioResult

— 1 0CRef Num

- csCode

— ccbRef Num

~ localcdD

~ renoteCl D

- renot eAddress
- filterAddress
~ sendSeq

~ sendW ndow
— recvSeq

~ attnSendSeq
— attnRecvSeq

- ocMode

- oclnterval

- ocMaxi mum

ocPassive

— i oConpletion
~ JioResult

— i oCRef Num

- csCode

— ccbRef Num

~ localCD

~ remteCl D

~ renot eAddress
- filterAddress
~ sendSeq

~ sendW ndow
— recvSeq

~ attnSendSeq
— attnRecvSeq

- ocMode

- oclnterval

-~ ocMaxi mum

ocAccept

— i 0oConpletion
~ JioResult

— i oCRef Num

- csCode

— ccbRef Num

~ localCD

-~ remoteCl D

- renot eAddress
— filterAddress
- sendSeq

- sendW ndow
— recvSeq

- attnSendSeq
— attnRecvSeq

- ocMode

- oclnterval

-~ ocMaxi mum

Key: - input < output o inputand output — notused

ADSP Reference

ocEstablish

— i 0oConpletion
~ JioResult

— i oCRef Num

- csCode
— ccbRef Num
— localdD

-~ remteCl D

- renot eAddress
— filterAddress
- sendSeq

- sendW ndow

- recvSeq

- attnSendSeq

- attnRecvSeq

- ocMode

— oclnterval

— ocMaxi mum

5-49

(4SAv) 10901014 Weans ereqd xreLaddy -

5-50

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Field descriptions
csCode

ccbRef Num

| ocal CI D

renot eCl D

r enot eAddr ess

filter Address

ADSP Reference

The routine selector, always equal to dspOpen for this routine.

The connection control block (CCB) reference number that was
returned by the dspl ni t routine for the connection end that you
want to use.

The identification number of the local connection end. This number
is assigned by ADSP when you open the connection. ADSP includes
this number in every packet sent to a remote connection end. Before
you call the dspQpen routine in ocEst abl i sh mode, you must
call the dspNewCl Droutine to cause ADSP to assign this value.

The identification number of the remote connection end. This
parameter is returned by the dspOpen routine in the ocRequest
and ocPassi ve modes. A connection server must provide this
number to the dspQpen routine when the server executes the
routine in ocAccept mode; in this case, the connection server
obtains the r enpt eCl Dvalue from the dspCLLi st en routine. You
must provide the r enpt eCl Dvalue to the dspQpen routine when
you use the routine in ocEst abl i sh mode.

The internet address of the remote socket with which you wish to
establish communications. This address consists of a 2-byte network
number, a 1-byte node ID, and a 1-byte socket number. You must
provide this parameter when you call the dspOpen routine in the
ocRequest or ocEst abl i sh mode. This parameter is returned by
the dspOpen routine when you call the routine in the ocPassi ve
mode. When you call the dspQOpen routine in the ocAccept mode,
you must use the value for the r endt eAddr ess parameter that
was returned by the dspCLLi st en routine.

The internet address of the socket from which you will accept a
connection request. The address consists of three fields: a 2-byte
network number, a 1-byte node ID, and a 1-byte socket number.
Specify 0 for any of these fields for which you wish to impose no
restrictions. If you specify a filter address of $00082500, for example,
the connection end accepts a connection request from any socket at
node $25 of network $0008. Set the f i | t er Addr ess parameter
equal to the r enot eAddr ess parameter to accept a connection
only with the socket to which you sent a connection request.

When you execute the dspQpen routine in the ocPassi ve mode,
you can receive a connection request from any ADSP connection
end on the internet. When you execute the dspQpen routine in the
ocRequest mode, your connection end can receive a connection
request acknowledgment from an address different from the one
you specified in the r enot eAddr ess parameter only if the remote
address you specified was that of a connection listener. In either
case, you can use the fi | t er Addr ess parameter to avoid acknowl-
edging unwanted connection requests.

When you execute the dspOpen routine in the ocAccept mode,
your connection listener has already received and decided to accept
the connection request. You can specify a filter address for a

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

sendSeq

sendW ndow

recvSeq

att nSendSeq

at t nRecvSeq

ADSP Reference

connection listener with the dspCLLi st en routine. A connection
server can use the dspCLDeny routine to deny a connection request
that was accepted by its connection listener.

You cannot use the filter address when you execute the dspOpen
routine in 0cEst abl i sh mode.

The sequence number of the first byte that the local connection end
will send to the remote connection end. ADSP uses this number to
coordinate communications and to check for errors. ADSP returns a
value for the sendSeq parameter when you execute the dspOpen
routine in the ocRequest or ocPassi ve mode. When you execute
the dspOpen routine in the ocAccept mode, you must specify

the value for the sendSeq parameter that was returned by the
dspCLLi st en routine. You must provide the value for this
parameter when you execute the dspOpen routine in the

ocEst abl i sh mode.

The sequence number of the last byte that the remote connection
end has buffer space to receive. ADSP uses this number to
coordinate communications and to check for errors. ADSP returns

a value for the sendW ndow parameter when you execute the
dspOpen routine in the ocRequest or ocPassi ve mode. When
you execute the dspOpen routine in the ocAccept mode, you must
specify the value for the sendW ndow parameter that was returned
by the dspCLLi st en routine. You must provide the value for this
parameter when you execute the dspQpen routine in the

ocEst abl i sh mode.

The sequence number of the next byte that the local connection
end expects to receive. ADSP uses this number to coordinate
communications and to check for errors. You must provide the
value for this parameter when you execute the dspOpen routine
in the ocEst abl i sh mode. The dspQpen routine does not use
this parameter when you execute it in any other mode.

The sequence number of the next attention packet that the local
connection end will transmit. ADSP uses this number to coordinate
communications and to check for errors. ADSP returns a value

for the at t nSendSeq parameter when you execute the dspOpen
routine in the ocRequest or ocPassi ve mode. When you execute
the dspOpen routine in the ocAccept mode, you must specify

the value for the at t nSendSeq parameter that was returned

by the dspCLLi st en routine. You must provide the value for

this parameter when you execute the dspQpen routine in the
ocEst abl i sh mode.

The sequence number of the next attention packet that the local
connection end expects to receive. ADSP uses this number to ensure
that packets are delivered in the correct order and to check for
errors. You must provide a value for this parameter when you
execute the dspQpen routine in the ocEst abl i sh mode. The
dspQOpen routine does not use this parameter when you execute it
in any other mode.

5-51

(4SAv) 10901014 Weans ereqd xreLaddy -

DESCRIPTION

5-52

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

ochMbde The mode in which the dspOpen routine is to operate, as follows:

Mode Value Meaning

ocRequest 1 ADSP attempts to open a connection
with the socket you specify.

ocPassi ve 2 The connection end waits to receive a
connection request.

ocAccept 3 The connection server accepts and
acknowledges receipt of a connection
request.

ocEst abl i sh 4 ADSP considers the connection

established and open; you are
responsible for setting up and
synchronizing both connection ends.

ocl nt erval The period between transmissions of open-connection requests.
If the remote connection end does not acknowledge or deny an
open-connection request, ADSP retransmits the request after a
time period specified by this parameter. The time period used by
ADSP is (ocl nt er val x10) ticks, or (ocl nt er val /6) seconds.
For example, if you set the ocl nt er val parameter to 3, the time
period between retransmissions is 30 ticks (!/2 second). You can set
the ocl nt er val parameter to any value from 1 (/6 second) to
180 (30 seconds). If you specify 0 for the ocl nt er val parameter,
ADSP uses the default value of 6 (1 second).

You must provide a value for the ocl nt er val parameter when
you execute the dspQpen routine in the ocRequest, ocPassi ve,
or ocAccept mode. The dspOpen routine does not use this
parameter when you execute it in the ocEst abl i sh mode.

ocMaxi mum The maximum number of times to retransmit an open-connection
request before ADSP terminates execution of the dspQpen routine.
If you specify 0 for the ocMaxi mumparameter, ADSP uses the
default value of 3. If you specify 255 for the ocMaxi mumparameter,
ADSP retransmits the open-connection request indefinitely until the
remote connection end either acknowledges or denies the request.
You must provide a value for the ocMaxi numparameter when you
execute the dspQOpen routine in the ocRequest , ocPassi ve, or
ocAccept mode. The dspQOpen routine does not use this parameter
when you execute it in the ocEst abl i sh mode.

The dspQOpen routine opens a connection end. You set the ocMode field of the parameter
block to specify the opening mode that the dspOpen routine is to use. The dspQpen
routine puts a connection end into one of the four following opening modes:

» The ocRequest mode, in which ADSP attempts to open a connection with the socket
at the internet address you specify as the r enot eAddr ess parameter. If the socket
you specify as a remote address is a connection listener, it is possible that your
application will receive a connection acknowledgment and request from a different

ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

address than the one to which you sent the open-connection request. You can use
thefilter Addr ess parameter to restrict the addresses with which you will accept
a connection.

The dspOpen routine completes execution in the ocRequest mode when one of the
following occurs: ADSP establishes a connection, your connection end receives

a connection denial from the remote connection end, your connection end denies the
connection request returned by a connection listener, or ADSP cannot complete

the connection within the maximum number of retries that you specified with the
ocMaxi mumparameter.

= The ocPassi ve node, in which the connection end waits to receive an open-
connection request from a remote connection end. You can use the f i | t er Addr ess
parameter to restrict the addresses from which you will accept a connection request.

The dspOpen routine completes execution in the ocPassi ve mode when ADSP
establishes a connection or when either connection end receives a connection denial.

= The ocAccept mode, used by connection servers to complete an open-connection
dialog. When a connection server is informed by its connection listener that the
connection listener has received an open-connection request, the connection server
calls the dspl ni t routine to establish a connection end and then calls the dspOpen
routine in ocAccept mode to complete the connection. You must obtain the following
parameters from the dspCLLi st en routine and provide them to the dspOpen
routine: r enot eAddr ess, r enot eCl D, sendSeq, sendW ndow and at t nSendSeq.
Connection listeners and connection servers are described in “Creating and Using a
Connection Listener” beginning on page 5-22 and in “Establishing and Terminating an
ADSP Connection” beginning on page 5-44. See “Connection Listeners” on page 5-7
for a brief introduction to connection listeners.

The dspQOpen routine completes execution in the ocAccept mode when ADSP
establishes a connection or when either connection end receives a connection denial.

s The ocEst abl i sh mode, in which ADSP considers the connection end established
and the connection state open. This mode is for use by clients that determine their
connection-opening parameters without using ADSP or the .DSP driver to do so.
You must first use the dspl ni t routine to establish a connection end and then
execute the dspNewCl Droutine to obtain an identification number (ID) for the
local connection end. You must then communicate with the remote connection end
to send it the local connection ID and to determine the values of the following
parameters: r endt eAddr ess, r enot eCl D, sendSeq, sendW ndow r ecvSeq,
at t nSendSeq, and at t nRecvSeq. Only then can you execute the dspQpen routine
in the ocEst abl i sh mode.

The dspOpen routine completes execution in the ocEst abl i sh mode immediately.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspOpen routine from assembly language, call the _Cont r ol trap macro
with a value of dspOpen in the csCode field of the parameter block.

ADSP Reference 5-53

(4SAv) 10901014 Weans ereqd xreLaddy -

RESULT CODES

sdspOpen

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

noErr 0 No error
err QpenDeni ed -1273
err Qpeni ng -1277
errState -1278
err Aborted -1279
err Ref Num -1280

Open request denied by recipient

Attempt to open connection failed

Connection end must be closed

Request aborted by dspRenpve or dspC ose routine
Bad connection reference number

5-54

The sdspQOpen routine opens a secure (ASDSP) connection and causes ASDSP to
perform the challenge-and-reply process that authenticates the ASDSP clients at either
end of the connection. You use the PBCont r ol function to call the sdspOpen routine.
See “Routines” on page 5-43 for a description of the PBCont r ol function.

Parameter block

i oConpl eti on
i oResul t

i oCRef Num
csCode
cchbRef Num

| ocal CI D
renot eCl D

r enot eAddr ess
filterAddress
sendSeq

sendW ndow
recvSeq

att nSendSeq
at t nRecvSeq
ochMbde
ocl nt erval
ocMaxi mum

secure

sessi onKey
credenti al sSi ze
credential s

wor kspace
reci pi ent

i ssueTi ne
expiry
initiator

hasl nt er medi ary
i nternedi ary

ADSP Reference

ProcPtr
OSEr r

I nt eger
I nt eger
I nt eger

I nt eger

| nt eger
Addr Bl ock
Addr Bl ock
Longl nt

I nt eger
Longl nt
Longl nt
Longl nt
Byt e

Byt e

Byt e

Bool ean

Aut hKeyPt r
Longl nt

Ptr

Ptr

Aut hl dentity
UTCTi nme
UTCTi nme
Recor dl DPt r
Bool ean
Recor dl DPt r

A pointer to completion routine.

A result code.

The ADSP driver reference number.
Always sdspOpen for this function.
The CCB reference number for
connection end.

The ID of this connection end.

The ID of remote connection end.

A remote internet address.

A filter for open connection end.

The initial send sequence number.

The initial size of remote receive queue.
Not used for ASDSP.

The attention send sequence number.
Not used for ASDSP.

The connection-opening mode.

The interval between open requests.
The maximum number of retries of the
open-connection request.

A flag that determines if ASDSP
authenticates the connection.

A pointer to the session encryption key.
The length of credentials.

A pointer to credentials.

A pointer to workspace for connection.
The identity of recipient.

The time when credentials were issued.
The time when credentials expire.

A pointer to record ID of initiator.
TRUE if credentials has an intermediary.
A pointer to record ID of intermediary.

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

The use of parameters by the sdspQpen routine depends on the mode in which the

routine is executed, as follows:

ocRequest

- i oConpletion
~ i 0Result

- i oCRef Num

- c¢sCode
-~ ccbRef Num
~ localCD

~ renoteCl D

- renot eAddress
- filterAddress

~ sendSeq

~ sendW ndow

— recvSeq

~ attnSendSeq

— attnRecvSeq

- ocMode

- oclnterval

- ocMaxi mum

- secure

- SsessionKey

- credential sSi ze
- credentials

- wor kspace

— recipient

— issueTine

— expiry

— initiator

— haslnternedi ary
— internediary
Key: - input

Field descriptions
csCode
ccbRef Num

~ output

ocPassive

—

«—

—

“

—

“

~ input and output

i oConpl eti on
i oResul t

i 0CRef Num
csCode

ccbRef Num

| ocal CI D
renot eCl D

r enot eAddr ess
filterAddress
sendSeq
sendW ndow
recvSeq

att nSendSeq
att nRecvSeq
ocMde

ocl nterva
ocMaxi mum
secure

sessi onKey
credenti al sSi ze
credential s
wor kspace
reci pi ent

i ssueTi ne
expiry
initiator

hasl nt er nedi ary
i nternedi ary

ocAccept

—

—

—

>

—not used

i 0Conpl etion
i oResul t

i 0CRef Num
csCode

ccbRef Num

| ocal CI D
renmot eCl D

r enot eAddr ess
filterAddress
sendSeq
sendW ndow
recvSeq

att nSendSeq
at t nRecvSeq
ocMde
oclnterva
ocMaxi mum
secure

sessi onKey
credenti al sSi ze
credential s
wor kspace
reci pi ent

i ssueTi ne
expiry
initiator

hasl nt er nedi ary
i ntermedi ary

The routine selector, always equal to sdspQpen for this routine.
This field is used in the same way that it is used for ADSP. See the

description of this field under “dspOpen” beginning on page 5-48.

| ocal CI D

This field is used in the same way that it is used for ADSP. See the

description of this field under “dspOpen” beginning on page 5-48.

ADSP Reference

5-55

(4SAv) 10901014 Weans ereqd xreLaddy -

5-56

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

renot eCl D

r enot eAddr ess

filterAddress

sendSeq

sendW ndow

recvSeq
att nSendSeq

at t nRecvSeq

ADSP Reference

The identification number of the remote connection end. This
parameter is returned by the sdspOpen routine in the ocRequest
and ocPassi ve modes. A connection server must provide this
number to the sdspQpen routine when the server executes the
routine in ocAccept mode; in this case, the connection server
obtains the r enot eCl Dvalue from the dspCLLi st en routine.

The internet address of the remote socket with which you wish to
establish communications. This address consists of a 2-byte network
number, a 1-byte node ID, and a 1-byte socket number. You must
provide this parameter when you call the sdspOpen routine in

the ocRequest or ocAccept mode. When you call the sdspQOpen
routine in the ocAccept mode, you must use the value for the

r enot eAddr ess parameter that was returned by the dspCLLi st en
routine. This parameter is returned by the sdspQpen routine when
you call the routine in the ocPassi ve mode.

This field is used in the same way that it is used for ADSP. See the
description of this field under “dspOpen” beginning on page 5-48.

The sequence number of the first byte that the local connection end
will send to the remote connection end. ASDSP uses this number
to coordinate communications and to check for errors. ASDSP
returns a value for the sendSeq parameter when you execute

the sdspQpen routine in the ocRequest or ocPassi ve mode.
When you execute the sdspQOpen routine in the ocAccept node,
you must specify the value for the sendSeq parameter that was
returned by the dspCLLi st en routine.

The sequence number of the last byte that the remote connection
end has buffer space to receive. ASDSP uses this number to
coordinate communications and to check for errors. ASDSP returns
a value for the sendW ndow parameter when you execute the
sdspQpen routine in the ocRequest or ocPassi ve mode. When
you execute the sdspOpen routine in the ocAccept mode, you
must specify the value for the sendW ndow parameter that was
returned by the dspCLLi st en routine.

This field is not used by ASDSP.

The sequence number of the next attention packet that the local
connection end will transmit. ASDSP uses this number to
coordinate communications and to check for errors. ASDSP returns
a value for the at t nSendSeq parameter when you execute the
sdspQpen routine in the ocRequest or ocPassi ve mode. When
you execute the sdspOpen routine in the ocAccept mode, you
must specify the value for the at t nSendSeq parameter that was
returned by the dspCLLi st en routine.

This field is not used by ASDSP.

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

ochMbde

ocl nterva
ocMaxi mum

secure

sessi onkey

credenti al sSi ze

credential s

ADSP Reference

The mode in which the sdspOpen routine is to operate, as follows:

Mode Value Meaning

ocRequest 1 ADSP attempts to open a connection
with the remote socket you specify.

ocPassi ve 2 The connection end waits to receive
a connection request.

ocAccept 3 The connection server accepts and
acknowledges receipt of a connec-
tion request.

This field is used in the same way that it is used for ADSP. See the
description of this field under “dspOpen” beginning on page 5-48.
This field is used in the same way that it is used for ADSP. See the
description of this field under “dspOpen” beginning on page 5-48.
A flag that determines whether ASDSP authenticates the connection.
On input for the initiator end, you must set this value to TRUE if you
want ASDSP to authenticate the connection. You must provide a
value for the secur e parameter when you execute the sdspQOpen
routine in the ocRequest mode. ASDSP returns a value of TRUE for
this parameter to the recipient for all modes if the session was
authenticated.

A pointer to a buffer containing the session key returned by

the Authentication Manager’s Aut hCGet Cr edent i al s or

Aut hTr adePr oxyFor Cr edent i al s function. The initiator
connection end must provide an input value for this parameter.

For the recipient connection end, ASDSP breaks out the session

key from the credentials block and returns a copy of the session key
as the value of this parameter. See the description of the data
structures that you need to allocate for ASDSP in the section
“Opening a Secure Connection” beginning on page 5-30 for more
information about the buffer.

The size in bytes of credentials returned by the Authentica-

tion Manager’s Aut hTr adePr oxyFor Cr edenti al s or

Aut hGet Cr edent i al s function.You must provide a value for the
credenti al sSi ze parameter when you execute the sdspQpen
routine in the ocRequest mode. This parameter is not used for the
recipient end of the connection when you call the sdspCpen
routine in ocAccept mode or ocPassi ve mode.

A pointer to the credentials for this session that the Authentica-
tion Manager’s Aut hTr adePr oxyFor Cr edent i al s or

Aut hGet Cr edent i al s function returned when you called it.
Specify the size in bytes of the credential block pointed to by this
parameter as the value of the cr edent i al SSi ze parameter when
you call the sdspQOpen routine in the ocRequest mode. This
parameter is not used for the recipient end of the connection when
you call the sdspOpen routine in ocAccept mode or ocPassi ve
mode. See the chapter “Authentication Manager” in Inside
Macintosh: AOCE Application Programming Interfaces.

5-57

(4SAv) 10901014 Weans ereqd xreLaddy -

DESCRIPTION

5-58

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

wor kspace

reci pi ent

i ssueTi ne

expiry

initiator

hasl nt er medi ary

i nternmedi ary

A pointer to a buffer that you allocate as workspace for the
sdspQpen routine’s internal use. The memory for the buffer that
you allocate must be aligned on an even boundary and must be
equal in size to the sdspWor kSi ze constant, which is 2048 bytes.

When the value of the ocMbde parameter is ocAccept, you specify
the identity of the connection server as the value of the

reci pi ent parameter. When the value of the ocMbde parameter
is ocPassi ve, you specify the identity of the socket that is the
recipient of the request call as the value of the r eci pi ent
parameter. This field is not used when the ocMbde parameter

value is ocRequest .

The time when the authentication credentials were issued. Together
with the expi ry parameter value, the i ssueTi e parameter
specifies the period of time for which the credentials are valid.
ASDSP extracts the value for the i ssueTi me parameter from the
decrypted credentials. ASDSP returns this value when the mode is
ocPassi ve or ocAccept . Thei ssueTi ne field is not used when
the ocMbde parameter value is ocRequest .

The time when the authentication credentials expire. Together with
the i ssueTi me parameter value, the expi ry parameter specifies
the duration for which the credentials are valid. ASDSP extracts the
value for the expi r y parameter from the decrypted credentials. This
field is not used when the ocMbde parameter value is ocRequest .

A pointer to the record ID of the initiator that ASDSP returns when
the value of the ocMbde parameter is 0cAccept or ocPassi ve.
ASDSP extracts this value from the encrypted credentials. This field
is not used when the ocMbde parameter value is o0cRequest .

A flag that ASDSP sets if the credentials have an intermediary.
When this flag is set, a proxy was used; an intermediary used
the Aut hTr adePr oxyFor Cr edent i al s function to obtain the
credentials used in the authentication process. The sdspQpen
routine returns this value when the ocMbde parameter value is
ocPassi ve or ocAccept .

A pointer to a buffer that is used to store the record ID of the inter-
mediary, if ASDSP finds an intermediary in the credentials. The
sdspOpen routine returns this value when the ocMbde parameter
value is ocPassi ve or ocAccept .

The sdspQpen routine opens a secure connection end if the identities of both the
initiator and the recipient connection ends can be proven in the authentication process.
You set the ocMode field of the parameter block to specify the opening mode that the
sdspOpen routine is to use. The sdspOpen routine puts a connection end into one of the
three following opening modes:

= In the ocRequest mode, ASDSP attempts to open a connection with the socket at the
internet address you specify as the r endt eAddr ess parameter.

ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

= In the ocPassi ve mode, the connection end waits to receive an open-connection

request from a remote connection end. You can use the fi | t er Addr ess parameter
to restrict the addresses from which you will accept a connection request.

In the ocAccept mode, connection servers complete open-connection dialogs. When a
connection server is informed by its connection listener that the connection listener has
received an open-connection request, the connection server calls the dspl ni t routine
to establish a connection end and then calls the sdspQOpen routine in ocAccept mode
to complete the connection. Connection listeners and connection servers are described
in “Creating and Using a Connection Listener” beginning on page 5-22 and in
“Establishing and Terminating an ADSP Connection” beginning on page 5-44. See
“Connection Listeners” on page 5-7 for a brief introduction to connection listeners.

Except for the authentication process, these three modes are used by ASDSP and
ADSP in the same way and their behavior is the same. See the description of how
these modes are used in “dspOpen” beginning on page 5-48.

If ASDSP cannot successfully complete the authentication process, ASDSP tears down
the connection and the sdspQpen calls made by both the initiator and the recipient
return a result code reporting the reason why the authentication process failed. For
the conditions that can cause the authentication process to fail, see the list of result

codes that follows.

ASSEMBLY-LANGUAGE INFORMATION

To execute the sdspOpen routine from assembly language, call the _Cont r ol trap
macro with a value of sdspQOpen in the csCode field of the parameter block.

RESULT CODES

noErr 0 No error

err OpenDeni ed -1273 Open request denied by recipient

er r FwdReset -1276 A forward reset caused ASDSP to terminate
the request

err Qoeni ng -1277 Attempt to open connection failed

errState -1278 Connection end is not open

errAborted -1279 Request aborted by dspRenpve or
dspd ose routine

er r Ref Num -1280 Bad connection reference number

kCCEUnsuppor t edCr edent i al sVer si on -1543 Credentials version not supported

kOCEBadEncr ypt i onMet hod -1559 During the authentication process, the
ASDSP implementations could not agree on
an encryption method to be used (ASDSP
can support multiple stream encryption
methods. In Release 1, only RC4 and “no
encryption” are supported.)

k OCCENoASDSPWr kSpace -1570 You passed NI L for the workspace
parameter

kOCEAut hent i cati onTr oubl e -1571 Authentication process failed

ADSP Reference

5-59

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

dspNewCID

DESCRIPTION

The dspNewCl Droutine creates a connection ID to be used in setting up a connection.
You use the PBCont r ol function to call the dspNewCl Droutine. See “Routines” on
page 5-43 for a description of the PBCont r ol function.

Parameter block

. i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t CSEr r The function result.

- i 0CRef Num I nt eger The driver reference number.

= csCode | nt eger Always dspNewCl D for this function.
. ccbRef Num | nt eger The CCB reference number.

- newCl D I nt eger The ID of new connection.

Field descriptions

csCode The routine selector, always equal to dspNewCl D for this routine.

ccbRef Num The connection control block (CCB) reference number that was
returned by the dspNewCl D routine for the connection end that
you want to use.

newCl D The connection-end ID that this routine returns. You must provide
this number to the client of the remote connection end so that
it can use it for the r enot eCl D parameter when it calls the
dspQpen routine.

The dspNewCl D routine causes ADSP to assign an ID to a connection end without
opening the connection end or attempting to establish a connection with a remote
connection end. Use this routine only if you implement your own protocol to establish
communication with a remote connection end. You must first use the dspl ni t routine
to establish a connection end. Next, you must call the dspNewCl D routine to obtain a
connection-end ID. Then you must establish communication with a remote connection
end and pass the ID to the remote connection end. Finally, you must call the dspOpen
routine in 0CEst abl i sh mode to cause ADSP to open the connection.

ASSEMBLY-LANGUAGE INFORMATION

5-60

To execute the dspNewCl Droutine from assembly language, call the _Contr ol trap
macro with a value of dspNewCl Din the csCode field of the parameter block.

ADSP Reference

RESULT CODES

SEE ALSO

dspClose

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

noErr 0 No error
errState -1278 Connection is not closed
err Ref Num -1280 Bad connection reference number

To establish a connection, use the dspl ni t routine, described on page 5-45.
To obtain a connection-end ID, use the sdspQpen routine, described on page 5-54.

To open a connection in 0cEst abl i sh mode, use the dspOpen routine, described on
see page 5-48.

The dspCl ose routine closes a connection end. You use the PBCont r ol function
to call the dspCl ose routine. See “Routines” on page 5-43 for a description of the
PBCont r ol function.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t CSErr The function result.

- i 0CRef Num I nt eger The driver reference number.

- csCode I nt eger Always dspd ose for this function.

- ccbRef Num I nt eger The CCB reference number.

- abort Byt e A value specifying to abort send requests
if not 0.

Field descriptions
csCode The routine selector, always equal to dspCl ose for this routine.

ccbRef Num The connection control block (CCB) reference number that was
returned by the dspNewCl D routine for the connection end that
you want to close.

abort A value that specifies whether or not to send all of the data in the
send queue and all outstanding messages before closing the
connection end. If the abort parameter is nonzero, ADSP cancels
any outstanding requests to send data packets (such as the
dspAtt enti on routine) and discards all data in the send queue.
If the abort parameter is 0, ADSP does not close the connection
end until all of the data in the send queue and all outstanding
attention messages have been sent and acknowledged.

ADSP Reference 5-61

(4SAv) 10901014 Weans ereqd xreLaddy -

DESCRIPTION

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

The dspCl ose routine closes the connection end. The connection end is still established;
that is, ADSP retains ownership of the CCB, send queue, receive queue, and attention-
message buffer. You can continue to read bytes from the receive queue after you have
called the dspC ose routine. Use the dspRenpve routine instead of the dspd ose
routine if you are finished with reading bytes from the receive queue and want to release
the memory associated with the connection end.

SPECIAL CONSIDERATIONS

The dspC ose routine does not return an error if you call it for a connection end that is
already closed.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspCl ose routine from assembly language, call the _Cont r ol trap
macro with a value of dspC ose in the csCode field of the parameter block.

RESULT CODES
nokErr 0 No error
err Ref Num -1280 Bad connection reference number
SEE ALSO
For information on how to remove a connection end and release the memory associated
with it, see the description of the dspRenove routine that follows.
dspRemove
The dspRenove routine closes any open connection and eliminates the connection
end, releasing all memory associated with it. You use the PBCont r ol function to
call the dspRenpve routine. See “Routines” on page 5-43 for a description of the
PBCont r ol function.
Parameter block
. i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t OSErr The function result.
- i 0CRef Num I nt eger The driver reference number.
- csCode I nt eger Always dspRenpve for this function.
. ccbRef Num | nt eger The CCB reference number.
- abort Byt e A value specifying to abort connection
if not 0.
5-62 ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Field descriptions

csCode The routine selector, always equal to dspRenpve for this routine.

ccbRef Num The connection control block (CCB) reference number that was
returned by the dspNewCl D routine for the connection end that
you want to remove.

abort A value that specifies whether or not to send all of the data in
the send queue and all outstanding messages before closing the
connection end. If the abort parameter is nonzero, ADSP cancels
any outstanding requests to send data packets (such as the
dspAtt enti on routine) and discards all data in the send queue.
If the abort parameter is 0, ADSP does not close the connection
end until all of the data in the send queue and all outstanding
attention messages have been sent and acknowledged.

DESCRIPTION

The dspRenpve routine closes the connection end whose connection control block
(CCB) you specify, and it eliminates that connection end; that is, ADSP no longer retains
control of the CCB, send queue, receive queue, and attention-message buffer. You cannot
continue to read bytes from the receive queue after you have called the dspRenpve
routine. After you call the dspRenpve routine, you can release all of the memory you
allocated for the connection end if you do not intend to reopen the connection end.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspRenpve routine from assembly language, call the _Cont r ol trap
macro with a value of dspRenove in the csCode field of the parameter block.

RESULT CODES

noErr 0 No error
err Ref Num -1280 Bad connection reference number

Establishing and Terminating an ADSP Connection Listener

A connection listener is a special kind of connection end that listens for open-connection
requests from remote connection ends. Connection listeners are used by connection
servers—that is, programs that assign a socket for the local connection end only after
they receive a connection request from a remote connection end. A single connection
listener can receive connection requests from any number of remote connection ends.

You can use the routines in this section to

= establish a connection listener

= cause the connection listener to listen for a connection request
= deny a connection request

» close and eliminate a connection listener

ADSP Reference 5-63

(4SAv) 10901014 Weans ereqd xreLaddy -

dspCLInit

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

DESCRIPTION

The dspCLI ni t routine establishes and initializes a connection listener. You use the
PBCont r ol function to call the dspCLI ni t routine. See “Routines” on page 5-43 for a
description of the PBCont r ol function.

Parameter block

. i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t CSEr r The function result.

- i oCRef Num I nt eger The driver reference number.

= csCode | nt eger Always dspCLI ni t for this function.
- ccbRef Num | nt eger The CCB reference number.

- cchPtr TPCCB A pointer to CCB.

- | ocal Socket Byt e The local DDP socket number.

Field descriptions

csCode The routine selector, always equal to dspCLI ni t for this routine.

ccbRef Num The connection control block (CCB) reference number. The
dspCLI ni t routine returns this value.You must provide this
number in all subsequent dspCLLi st en and dspCLRenpve
calls to this connection listener.

ccbPtr A pointer to the CCB that you allocated. The CCB is 242 bytes
in size.

| ocal Socket The number of the DDP socket that you want ADSP to use for this
connection end. Specify 0 for this parameter to cause ADSP to
assign the socket; in this case, ADSP returns the socket number
when the dspCLI ni t routine completes execution.

The dspCLI ni t routine establishes a connection listener; that is, it assigns a specific
socket for use by ADSP and initializes the variables that ADSP uses to maintain a
connection listener. The dspCLI ni t routine does not cause the connection listener
to listen for connection requests; you must follow the dspCLI ni t routine with the
dspCLLi st en routine to activate the connection listener.

You must allocate a block of nonrelocatable memory for a CCB before you call the
dspCLI ni t routine and pass a pointer to that CCB as the value of the ccbPt r
parameter. See the section “Creating and Using a Connection Control Block” on

page 5-12 and the section “The ADSP Connection Control Block Record” on page 5-35
for more information.

SPECIAL CONSIDERATIONS

5-64

The connection control block for which you allocate memory belongs to ADSP until you
explicitly remove the connection listener. You cannot release the memory for the CCB
until after you eliminate the connection listener.

ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the dspCLI ni t routine from assembly language, call the _Cont r ol trap
macro with a value of dspCLI ni t in the csCode field of the parameter block.

noErr 0 No error
ddpSkt Er r -91 Error opening socket

To establish a connection end that is not a connection listener, use the dspl ni t routine
described on page 5-45.

To eliminate a connection listener, use the dspCLRenDve routine, described on page 5-68.

dspCLListen

The dspCLLi st en routine causes a connection listener to listen for connection requests.
You use the PBCont r ol function to call the dspCLLi st en routine. See “Routines” on
page 5-43 for a description of the PBCont r ol function.

Parameter block

- i oConpl eti on ProcPtr A pointer to a completion routine.

- i oResul t CSEr r The function result.

- i oCRef Num | nt eger The driver reference number.

- csCode I nt eger Always dspCLLi st en for this function.
- ccbRef Num I nt eger The CCB reference number.

- renot eCl D I nt eger The ID of the remote connection end.

- r enot eAddr ess Addr Bl ock The remote internet address.
- filterAddress Addr Bl ock A filter for open-connection requests.

- sendSeq Longl nt The initial send sequence number.
- sendW ndow | nt eger The initial size of the remote
receive queue.
- att nSendSeq Longl nt The attention send sequence number.

Field descriptions

csCode The routine selector, always dspCLLi st en for this routine.
ccbRef Num The CCB reference number that the dspCLI ni t routine returned.
renot eCl D The identification number of the remote connection end. You must

pass this value to the dspOpen routine when you open the connec-
tion or to the dspCLDeny routine when you deny the connection
request. The dspCLLi st en routine returns this number.

renot eAddr ess The internet address of the remote socket that sent a request to open
a connection. This address consists of a 2-byte network number, a
1-byte node ID, and a 1-byte socket number. You must pass this
value to the dspQOpen routine when you open the connection or to
the dspCLDeny routine when you deny the connection request.

ADSP Reference 5-65

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

filterAddress Theinternet address of the socket from which you will accept a
connection request. The address consists of three fields: a 2-byte
network number, a 1-byte node ID, and a 1-byte socket number.
Specify 0 for any of these fields for which you wish to impose no
restrictions. If you specify a filter address of $00082500, for example,
the connection listener accepts a connection request from any socket
at node $25 of network $0008.

sendSeq The sequence number of the first byte that the local connection end
will send to the remote connection end. ADSP uses this number to
coordinate communications and to check for errors. You must pass
this value to the dspOpen routine when you open the connection.

sendW ndow The sequence number of the last byte that the remote connection
end has buffer space to receive. ADSP uses this number to
coordinate communications and to check for errors. You must pass
this value to the dspQpen routine when you open the connection.

at t nSendSeq The sequence number of the next attention packet that the local
connection end will transmit. ADSP uses this number to ensure that
attention packets are delivered in the correct order and to check for
errors. You must pass this value to the dspQpen routine when you
open the connection.

DESCRIPTION

The dspCLLi st en routine initiates the connection listener. You must have already used
the dspCLI ni t routine to establish a connection listener before using the dspCLLi st en
routine. The dspCLLi st en routine is used only by connection servers.

When ADSP receives an open-connection request from a socket that satisfies the address
requirements of the f i | t er Addr ess parameter, it returns values for the r enot eCl D,

r enot eAddr ess, sendSeq, sendW ndow and at t nSendSeq parameters and
completes execution of the dspCLLi st en routine. You must then either accept the
open-connection request by calling the dspQpen routine in the ocAccept mode or
deny the request by calling the dspCLDeny routine.

You can call the dspCLLi st en routine several times, specifying the same connection
listener. For example, if you wanted to accept connections from any or all of three
different addresses, you could call the dspCLLi st en routine three times with a different
value for the fi | t er Addr ess parameter each time. Note that you must execute the
dspCLLi st en routine asynchronously to take advantage of this feature.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspCLLi st en routine from assembly language, call the _Contr ol trap
macro with a value of dspCLLi st en in the csCode field of the parameter block.

5-66 ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

RESULT CODES
noErr 0 No error
errState -1278 Not a connection listener
err Aborted -1279 Request aborted by the dspRenpve routine
err Ref Num -1280 Bad connection reference number
dspCLDeny

The dspCLDeny routine denies a connection request from a remote connection end. You
use the PBCont r ol function to call the dspCLDeny routine. See “Routines” on
page 5-43 for a description of the PBCont r ol function.

Parameter block.

- i oConpl eti on ProcPtr A pointer to a completion routine.

- i oResul t CsErr The function result.

- i oCRef Num I nt eger The driver reference number.

- csCode I nt eger Always dspCLDeny for this function.
- ccbRef Num I nt eger The CCB reference number.

- renot eCl D I nt eger The ID of the remote connection end.

- r enot eAddr ess Addr Bl ock The remote internet address.

Field descriptions

csCode The routine selector, always dspCLDeny for this routine.

ccbRef Num The CCB reference number for the connection listener that received
the request. This is the CBB number that the dspCLI ni t routine

returned for the connection listener when you established a
connection listener.

renot eCl D The ID of the remote connection end. The dspCLLi st en routine
returns this value.

r enot eAddr ess The internet address of the remote connection end. The
dspCLLi st en routine returns this value.

DESCRIPTION

A connection server uses the dspCLDeny routine to inform a remote connection end that
its request to open a connection cannot be honored. If you want your connection listener
to continue to listen for further connection requests, you must call the dspCLLi st en
request again after you call dspCLDeny.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspCLDeny routine from assembly language, call the _Cont r ol trap
macro with a value of dspCLDeny in the csCode field of the parameter block.

ADSP Reference 5-67

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

RESULT CODES
noErr 0 No error
errState -1278 Not a connection listener
errAborted -1279 Request aborted by the dspRenpve routine
err Ref Num -1280 Bad connection reference number
dspCLRemove

The dspCLRenve routine closes a connection end used as a connection listener. You use
the PBCont r ol function to call the dspCLRenDve routine. See “Routines” on page 5-43
for a description of the PBCont r ol function.

Parameter block

- i oConpl eti on ProcPtr A pointer to a completion routine.

- i oResul t OSEr r The function result.

- i 0oCRef Num I nt eger The driver reference number.

- csCode I nt eger Always dspCLRenpve for this function.
- ccbRef Num I nt eger The CCB reference number.

- abort Byt e A value specifying to abort outstanding

requests if not 0.

Field descriptions
csCode The routine selector, always dspCLRenpve for this routine.

ccbRef Num The connection control block (CCB) reference number that the
dspCLI ni t routine returned.

abort A value directing ADSP whether or not to cancel any outstanding
listen and deny requests. If this value is nonzero, ADSP cancels
outstanding dspCLLi st en and dspCLDeny requests. If this value
is 0, ADSP does not cancel these requests.

DESCRIPTION

The dspCLRenpve routine closes a connection end used as a connection listener. After
you call the dspCLRenpve routine, you can release the memory that you allocated for
the CCB if you do not intend to reopen the connection end.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspCLRenove routine from assembly language, call the _Cont r ol trap
macro with a value of dspCLRenpve in the csCode field of the parameter block.

RESULT CODES

noErr 0 No error
err Ref Num -1280 Bad connection reference number

5-68 ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Maintaining an ADSP Connection and Using It to Exchange Data

dspStatus

Once you have established a connection end and opened a connection, you can send and
receive data over the connection. You can use the routines in this section to

s determine the status of a connection

» read bytes from the connection end’s receive queue

» write bytes to the connection end’s send queue and transmit them to the remote

connection end

= send an attention message to the remote connection end

» discard all data that has been sent but not yet delivered, and reset the connection

The dspSt at us routine returns the number of bytes waiting to be read and sent and the
amount of space available in the send and receive queues. You use the PBCont r ol
function to call the dspSt at us routine. See “Routines” on page 5-43 for a description of
the PBCont r ol function.

Parameter block

- i oConpl et

- i oResul t
N i oCRef Num
5 csCode

- ccbRef Num
- st at usCCB
- sendQPendi
- sendQFree
- r ecvQPendi
- recvQFree

Field descriptions
csCode

ccbRef Num

st at usCCB

sendQ@Pendi ng

ADSP Reference

on Prochktr A pointer to a completion routine.
OSErr The function result.
I nt eger The driver reference number.
| nt eger Always dspSt at us for this function.
I nt eger The CCB reference number.
TPCCB A pointer to the CCB.
ng I nt eger Bytes waiting to be sent or acknowledged.
I nt eger Available send queue in bytes.
ng I nt eger Bytes waiting to be read from queue.
I nt eger Available receive queue in bytes.

The routine selector, always dspSt at us for this routine.

The connection control block (CCB) reference number that the
dspl ni t routine returned.

A pointer to the CCB of the connection specified by the ccbRef Num
parameter value.

The number of bytes of data that are in the send queue waiting to be
sent, including 1 byte for each logical end-of-message (EOM)
indicator in the send queue. (ADSP counts 1 byte for each EOM,
even though no actual data corresponds to the EOM indicator.) The
send queue contains all data that has been sent to ADSP for
transmission and that has not yet been acknowledged. Some of the
data in the send queue might have already been transmitted, but
ADSP retains it in the send queue until the remote connection end
acknowledges its receipt in case the data has to be retransmitted.

5-69

(4SAv) 10901014 Weans ereqd xreLaddy -

DESCRIPTION

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

sendQFr ee The number of bytes available in the send queue for additional data.

recvQPendi ng The number of bytes in the receive queue, including 1 byte for each
EOM if the EOM bit is set in an ADSP packet header. The receive
queue contains all of the data that has been received by the
connection end but not yet read by the connection end’s client.

recvQFree The number of bytes available in the receive queue for
additional data.

The dspSt at us routine provides information about an open connection. In addition to
returning the number of bytes waiting to be read and sent and the space available in the
send and receive queues, this routine also returns a pointer to the CCB, which contains
information about the state of the connection end and about connection events received
by the connection end. For more information about the CCB, see “Creating and Using a
Connection Control Block” on page 5-12 and “The ADSP Connection Control Block
Record” beginning on page 5-35.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

dspRead

To execute the dspSt at us routine from assembly language, call the _Cont r ol trap
macro with a value of dspSt at us in the csCode field of the parameter block.

noErr 0 No error
err Ref Num -1280 Bad connection reference number

5-70

The dspRead routine reads data from a connection end’s receive queue and writes the
data to a buffer that you specify. You use the PBCont r ol function to call the dspRead
routine. See “Routines” on page 5-43 for a description of the PBCont r ol function.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t OSEr r The function result.

- i 0CRef Num I nt eger The driver reference number.

> csCode I nt eger Always dspRead for this function.
- ccbRef Num I nt eger The CCB reference number.

- r eqCount I nt eger The requested number of bytes.

- act Count I nt eger The actual number of bytes read.

- dat aPtr Ptr A pointer to the data buffer.

- eom Byt e A flag indicating the end of message.

ADSP Reference

DESCRIPTION

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Field descriptions

csCode The routine selector, always dspRead for this routine.

ccbRef Num The connection control block (CCB) reference number that the
dspl ni t routine returned.

r eqCount The number of bytes that ADSP is to read.

act Count The actual number of bytes that ADSP read.

dat aPtr A pointer to the buffer into which ADSP is to place the data.

eom A flag indicating if the last byte that ADSP read was a logical

end-of-message indicator. If the last byte constitutes an EOM,
ADSP sets this parameter to 1. If not, it sets this parameter to 0.

The dspRead routine reads data from an ADSP connection. You can continue to read
bytes as long as data is in the receive queue, even after you have called the dspC ose
routine or after the remote connection end has called the dspCl ose or dspRenpve
routine. The dspRead routine completes execution when it has read the number of
bytes you specify or when it encounters an end of message (that is, the last byte

of data in an ADSP packet that has the EOM bit set in the packet header).

You can call the dspSt at us routine to determine the number of bytes remaining to be
read from the read queue, or you can continue to call the dspRead routine until the
act Count and eomparameters both return 0.

If either end closes the connection before you call the dspRead routine, the command
reads whatever data is available and returns the actual amount of data read in the
act Count parameter. If the connection is closed and there is no data in the receive
queue, the dspRead routine returns the noEr r result code with the act Count
parameter set to 0 and the eomparameter set to 0.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the dspRead routine from assembly language, call the _Cont r ol trap macro
with a value of dspRead in the csCode field of the parameter block.

nokErr 0 No error

er r FwdReset -1275 Read terminated by forward reset

errState -1278 State isn’t open, closing, or closed

errAborted -1279 Request aborted by dspRenpve or dspC ose routine
err Ref Num -1280 Bad connection reference number

ADSP Reference 5-71

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream

Protocol (ADSP)

dspWrite
The dspW i t e routine writes bytes into a connection end’s send queue for ADSP or
ASDSP to transmit across a connection. When ASDSP is used and the encrypt bit is
set, ASDSP encrypts the data before sending it. You use the PBCont r ol function to
call the dspW i t e routine. See “Routines” on page 5-43 for a description of the
PBCont r ol function.
Parameter block
- i oConpl eti on ProcPtr A pointer to a completion routine.
- i oResul t OSEr r The function result.
- i oCRef Num I nt eger The driver reference number.
- csCode | nt eger Always dspW i t e for this function.
- ccbRef Num I nt eger The CCB reference number.
- r eqCount I nt eger The requested number of bytes.
- act Count I nt eger The actual number of bytes written.
- dat aPt r Ptr A pointer to the data buffer.
- eom Byte For ADSP: a flag indicating end of message.
For ASDSP: a flag indicating end of
message or encryption.
- flush Byt e A flag indicating whether to send
buffered data.
Field descriptions
csCode The routine selector, always dspW i t e for this routine.
ccbRef Num The connection control block (CCB) reference number that the
dspl ni t routine returned.
reqCount The number of bytes to write.
act Count The actual number of bytes written to the send queue.
dat aPt r A pointer to the buffer from which ADSP or ASDSP should read the
data that is to be sent.
eom For ADSP, a flag indicating if the last byte written to the send queue
was a logical end-of-message indicator. If the last byte constitutes
an EOM, you set this parameter to 1. If not, you set this parameter
to 0. The high-order bits of the eomparameter are reserved for use
by ADSP; you must leave these bits equal to 0.
For ASDSP, if this is a secure connection, this field constitutes two
single-bit flags instead of a zero/nonzero byte. If set to 1, bit 0
indicates the end of message; if set to 1, bit 1 turns on encryption.
Note that ASDSP checks this flag on the first write of the connection
and the first write following a write for which the end-of-message
flag (bit 0 of the eomfield) is set.
flush A flag indicting whether or not ADSP or ASDSP should immediately
send the data in the send queue to the remote connection. Setf | ush
to 1 to cause ADSP or ASDSP to immediately transmit any data in the
send queue that has not already been transmitted. Set f | ush to 0 to
5-72 ADSP Reference

DESCRIPTION

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

allow data to accumulate in the send queue until another condition
occurs that causes data to be transmitted. The high-order bits of the
f | ush parameter are reserved for use by ADSP or ASDSP; you must
leave these bits equal to 0.

The dspW i t e routine sends data across an ADSP or ASDSP connection. The send
queue contains all data that has been sent to ADSP or ASDSP for transmission and that
has not yet been acknowledged. Some of the data in the send queue might have already
been transmitted, but ADSP or ASDSP retains it in the send queue until the remote
connection end acknowledges its receipt in case the data has to be retransmitted. The
dspW i t e routine completes execution when it has copied all of the data from the data
buffer into the send queue.

ADSP or ASDSP transmits the data in the send queue when the remote connection end
has room to accept the data and one of the following conditions occurs:

= You call the dspW i t e routine with the flush parameter set to a nonzero number.

s The number of bytes in the send queue equals or exceeds the blocking factor. (You use
the sendBl ocki ng parameter to the dspQpt i ons routine to set the blocking factor.)

» The send timer expires.

» A connection event requires that the local connection end send an acknowledgment
packet to the remote connection end.

For an ADSP dspW i t e call, you can set the r eqCount parameter to 0 and the eom
parameter to 1 to indicate that the last byte you sent the previous time you called the
dspW i t e routine was the end of the message. You can set the r eqCount parameter to
a value larger than the size of the send queue. If you do so, the dspW i t e routine writes
as much data as it can into the send queue, sends the data and waits for acknowledg-
ment, and then writes more data into the send queue until it has written the amount of
data you requested. In this case, the routine does not complete execution until it has
finished writing all of the data into the send queue.

For an ASDSP dspW i t e call, you can set the encrypt bit of the eomfield (bit 1) of the
DSP parameter block. Note that ASDSP checks this flag on the first write of the connec-
tion or the first write following a write for which the end-of-message flag (bit 0 of the
eomfield) is set. You can set the end-of-message bit (bit 0) of the eomfield to indicate the
end of the message.

= To set the encrypt bit, you use the dspEncr ypt Mask mask or the
dspEncrypt Bi t constant.

= To set the end-of-message bit, you use the dspEOMVask mask or the
dspEOMBI t constant.

Set the f | ush parameter to 1 to cause ADSP to immediately transmit any data in the
send queue that has not already been transmitted. Set the f | ush parameter to 0 to allow
data to accumulate in the send queue until another condition occurs that causes data to
be transmitted.

ADSP Reference 5-73

(4SAv) 10901014 Weans ereqd xreLaddy -

ASSEMBLY-LANGUAGE INFORMATION

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

If you want to encrypt all messages, you can simply set the encrypt bit on all calls to the

dspW i t e function.

To execute the dspW i t e routine from assembly language, call the _Cont r ol trap
macro with a value of dspW i t e in the csCode field of the parameter block.

RESULT CODES
noErr 0 No error
errState -1278 Connection is not open
errAborted -1279 Request aborted by dspRenpve or dspC ose routine
err Ref Num -1280 Bad connection reference number
dspAttention

5-74

The dspAt t ent i on routine sends an attention code and an attention message to the
remote connection end. You use the PBCont r ol function to call the dspAt t ent i on
routine. See “Routines” on page 5-43 for a description of the PBCont r ol function.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t CSErr The function result.

N i 0CRef Num I nt eger The driver reference number.

N csCode I nt eger Always dspAt t ent i on for this function.
- ccbRef Num I nt eger The CCB reference number.

- at t nCode I nt eger The client attention code.

- attnSi ze I nt eger The size of attention data in bytes.

- at t nDat a Ptr A pointer to attention data.

Field descriptions
csCode
cchbRef Num

at t nCode

attnSi ze
att nDat a

ADSP Reference

The routine selector, always dspAt t ent i on for this routine.

The connection control block (CCB) reference number that the
dspl ni t routine returned.

The 2-byte attention code that you wish to send to the remote
connection end. You can use any value from $0000 through $EFFF
for the attention code. The values $F000 through $FFEF are reserved
for use by ADSP.

The size in bytes of the attention message you wish to send.

A pointer to the attention message. The attention message can be
any size from 0 through 570 bytes. There are no restrictions on the
content of the attention message.

DESCRIPTION

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

The dspAt t ent i on routine sends an attention code and message. Attention codes and
attention messages can have any meaning that your application and the application at
the remote connection end both recognize. The purpose of attention codes and messages
is to allow clients of ADSP to send messages outside the normal data stream.

For example, if a connection end on a mainframe computer is connected to several
connection ends in Macintosh computers being used as remote terminals, the mainframe
computer might wish to inform the remote terminals that all connections will be
terminated in ten minutes. The mainframe application could send an attention message
to each of the remote terminals informing them of this fact, and the terminal emulation
programs in the Macintosh computers could then display an alert message on the screen
so that the users could prepare to shut down.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

dspReset

To execute the dspAt t ent i on routine from assembly language, call the _Cont r ol trap
macro with a value of dspAt t ent i on in the csCode field of the parameter block.

noErr 0 No error

errAttention -1276 Attention message too long

errState -1278 Connection is not open

errAborted -1279 Request aborted by dspRenpve or dspC ose routine
err Ref Num -1280 Bad connection reference number

The dspReset routine clears all the data associated with the connection that the remote
connection client has not already read and resynchronizes the connection. You use the
PBCont r ol function to call the dspReset routine. See “Routines” on page 5-43 for a
description of the PBCont r ol function.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSErr The function result.

- i 0CRef Num I nt eger The driver reference number.

- csCode I nt eger Always dspReset for this routine.
- ccbRef Num I nt eger The CCB reference number.

Field descriptions
csCode The routine selector, always dspReset for this routine.

ccbRef Num The connection control block (CCB) reference number that the
dspl ni t routine returned.

ADSP Reference 5-75

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

DESCRIPTION

The dspReset routine causes ADSP to discard all data in the send queue, all data in
transit to the remote connection end, and all data in the remote connection end’s receive
queue that the client has not yet read. This process is known as a forward reset. ADSP
then resynchronizes the connection. You can determine that your connection end has
received a forward reset and has discarded all data in the receive queue by checking the
eFwdReset flag in the user Fl ags field of the CCB. For information on the CCB, see
“Connections, Connection Ends, and Connection States” beginning on page 5-6.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspReset routine from assembly language, call the _Cont r ol trap
macro with a value of dspReset in the csCode field of the parameter block.

RESULT CODES
noErr 0 No error
errState -1278 Connection is not open
err Aborted -1279 Request aborted by dspRenpve or dspC ose routine
err Ref Num -1280 Bad connection reference number

5-76 ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Summary of ADSP

Pascal Summary

Constants

CONST
{ADSP routine sel ectors}
dspl ni t = 255; {create a new connection end}
dspRenove = 254; {remove a connection end}
dspQOpen = 253; {open a connecti on}
dspd ose = 252; {cl ose a connecti on}
dspCLI ni t = 251; {create a connection |istener}
dspCLRenbve = 250; {renove a connection |istener}
dspCLLi sten = 249; {post a listener request}
dspCLDeny = 248; {deny an open-connection request}
dspSt at us = 247, {get status of connection end}
dspRead = 246; {read data fromthe connection}
dspWite = 245; {write data on the connecti on}
dspAttention = 244, {send an attention nessage}
dspOpt i ons = 243; {set connection end options}
dspReset = 242; {forward reset the connection}
dspNewCl D = 241, {generate a CID for a }

{ connection end}

sdspOpen = 229; {open a secure connection}

{ ADSP connecti on- openi ng nodes}

ocRequest =1
ocPassi ve = 2;
ocAccept = 3;
ocEst abl i sh = 4,

{ADSP connection end st ates}
sLi st eni ng =1,
sPassi ve = 2;

Summary of ADSP

{request a connection with a }

{ renote connection end}

{wait for a connection request }
{ fromrenote connection end}
{accept request as delivered by }
{ listener}

{consi der connection to be open}

{for connection |isteners}
{waiting for a connection }
{ request fromrenote }

{ connection end}

5-77

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

sOpeni ng = 3; {requesting a connection }

{ with renote connection end}
sOpen = 4, {connection is open}
sCl osi ng = b; {connection is being torn down}
sC osed = 6; {connection end state is cl osed}

{ ASDSP end- of - nessage and encrypt flags and masks}

dspEncrypt Bi t =1, {set to encrypt nessage}

dspEOVBI t = 0; {set if EOM at end of wite}
dspEOMVask = $1; {mask for setting the EOM bit}
dspEncrypt Mask = $2; {mask for setting the encrypt bit}

{ADSP client event flags}

eCl osed = $80; {recei ved connection-cl osed event}
eTear Down = $40; {cl osed due to broken connecti on}
eAttention = $20; {received attenti on nessage}
eFwdReset = $10; {received forward reset event}

{m scel | aneous ADSP const ant s}
att nBuf Si ze = 570; {size of client attention buffer}
nm nDSPQueueSi ze = 100; {m ni mum si ze of receive or }

{ send queue}

{driver control ioResults}

err Ref Num = -1280; {bad connection refNun}
errAborted = -1279; {control call was aborted}
errState = -1278; {bad connection state for this }

{ operation}
err Qpeni ng = -1277; {open connection request fail ed}
errAttention = -1276; {attenti on nmessage too | ong}
er r FwdReset = -1275; {read terninated by forward reset}
er r DSPQueuesSi ze = -1274; {DSP read/wite queue too snall}
err OpenDeni ed = -1273; {open connection request deni ed}

Data Types

The ADSP Connection Control Block Record

TYPE TRCCB =
PACKED RECORD
ccbLi nk: TPCCB; {l'ink to next CCB}
ref Num I nt eger; {reference nunber}
state: I nt eger; {state of the connection end}

5-78 Summary of ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

user Fl ags:

| ocal Socket:

r enot eAddr ess:
at t nCode:
attnSi ze:
attnPtr:
reserved:

END;

The Address Block Record

TYPE Addr Bl ock =
PACKED RECORD
aNet :
aNode:
aSocket :
END;

The DSP Parameter Block

TYPE DSPPar anBl ock =
PACKED RECORD
gLi nk:
qType:
i oTrap:
i oCndAddr :
i oConpl eti on:
i oResul t:
i oNamePtr:
i oVRef Num
i 0CRef Num
csCode:
gSt at us:
ccbRef Num
CASE | nt eger OF
dsplnit, dspCLInit:
(ccbPtr:
user Rout i ne:
sendQSi ze:
sendQueue:
recvQsi ze:
recvQueue:
attnPtr:

Summary of ADSP

Byt e;

Byt e;

Addr Bl ock;
I nt eger;

I nt eger;
Ptr;

{user flags for connection}

{l ocal socket nunber}

{rempte end internet address}

{attention code received}
{size of attention data}

{pointer to attention data}

PACKED ARRAY[1..220] OF Byte;

I nt eger;
Byt e;
Byt e;

QEl enPtr;
| nt eger;
I nt eger;
Ptr;
ProcPtr;
CSErr;
StringPtr;
| nt eger;
I nt eger;
I nt eger;
Longl nt ;
I nt eger;

TPCCB;
ProcPtr;
| nt eger;
Ptr;

I nt eger;
Ptr;
Ptr;

{reserved for use by ADSP}

{networ k nunber}
{node | D}
{socket nunber}

{reserved}

{reserved}

{reserved}

{reserved}

{conpl etion routine}
{result code}
{reserved}

{reserved}

{driver reference nunber}
{primary command code}
{reserved}

{CCB reference nunber}

{pointer to CCB}

{pointer to user routine}
{size of send queue}
{pointer to send queue}
{size of receive queue}

{pointer to receive queue}
{pointer to attention-nessage buffer}

5-79

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

| ocal Socket : Byt e;
fillerl: Byt e);
dspQOpen, dspCLLi sten, dspCLDeny:
(1 ocal Cl D I nt eger;
renot eCl D: I nt eger;
r enot eAddr ess: Addr Bl ock
filterAddress: Addr Bl ock;
sendSeq: Longl nt ;
sendW ndow: I nt eger
recvSeq: Longl nt ;
at t nSendSeq: Longl nt ;
at t nRecvSeq: Longl nt;
ocMode: Byt e;
oclnterval : Byt e
ocMaxi mum Byt e;
filler2: Byte);
dspC ose, dspRenpve
(abort: Byt e;
filler3: Byte);
dspSt at us:
(st at usCCB: TPCCB
sendQ@endi ng: I nt eger
sendQFr ee: I nt eger;
recvQ@Pendi ng: I nt eger;
recvQrree: I nt eger);
dspRead, dspWite:
(reqCount: I nt eger;
act Count : I nt eger;
dat aPtr: Ptr;
eom Byt e;
flush: Byte);
dspAttention:
(att nCode: I nt eger;
attnSi ze: I nt eger;
at t nDat a: Ptr;
attnlnterval : Byt e;
filler4: Byte);
dspOpti ons:
(sendBl ocki ng: I nt eger;
sendTi ner: Byt e
rtmtTinmer: Byt e;
badSeqMax: Byt e;
useCheckSum Byte);

5-80 Summary of ADSP

{local socket nunber}
{filler for proper alignnent}

{local connection |D}

{renote connection |ID}
{rempte internet address}
{address filter}

{send sequence nunber}

{size of renmote buffer}
{recei ve sequence nunber}
{attention send seq nunber}
{attention receive seq nunt
{connecti on- openi ng node}
{interval bet. open requests}
{retries of open-conn req}
{filler for proper alignnment}

{abort send requests}
{filler for proper alignnment}

{pointer to CCB}

{bytes waiting in send queue}
{avai |l abl e send- queue buffer}
{bytes in receive queue}
{avail receive-queue buffer}

{requested nunber of bytes}
{actual nunber of bytes}
{pointer to data buffer}
{1if end of message}

{1 to send data now}

{client attention code}

{size of attention data}
{pointer to attention data}
{reserved}

{filler for proper alignnment}

{send- bl ocki ng threshol d}
{reserved}

{reserved}

{retransnmit advice threshol d}
{DDP checksum for packet s}

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

dspNewCl D:
(newCl D:
END;

I nt eger); {new connection |D}

DSPPBPt r = ~DSPPar anBl ock;

The ASDSP Parameter Block

TYPE SDSPPar anmBl ock =
PACKED RECORD
CASE | NTEGER OF
1. (dspParanBl ock: DSPParanBl ock);

2: (qLink: QEl enPtr; {reserved}
gType: I nt eger; {reserved}
i oTr ap: I nt eger; {reserved}
i oCndAddr : Ptr; {reserved}
i oCompl etion: ProcPtr; {conpl etion routine}
i oResul t: CSErr; {result code}
i oNamePtr: StringPtr; {reserved}
i oVRef Num I nt eger; {reserved}
i oCRef Num I nt eger; {adsp driver refNun}
csCode: I nt eger; {asdsp driver control code}
gSt at us: Longi nt ; {reserved}
ccbRef Num I nt eger; {connection end refNun}

secur eParans: TRSecur ePar ans) ;

{paraneters for dspOpenSecure}
END;

SDSPPBPt r = ~SDSPPar anBl ock;

The TRSecureParams Record

TYPE TRSecureParans =
PACKED RECORD

| ocal Cl D I nt eger; {l ocal connection |D}

renot eCl D I nt eger; {rempote connection |D}

r enot eAddr ess: Addr Bl ock; {address of renote end}
filterAddress: Addr Bl ock; {address filter}

sendSeq: Longi nt ; {local send sequence numnber}

sendW ndow. I nt eger; {send wi ndow si ze}

recvSeq: Longi nt ; {recei ve sequence nunber}

att nSendSeq: Longi nt ; {attention send sequence nunber}
att nRecvSeq: Longi nt; {attention recei ve sequence nunber}
ocMode: Byt e; {open connection node}

Summary of ADSP

5-81

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

oclnterval : Byt e; {open connection request }
{ retry interval}
ocMaxi mum Byt e; {open connection request }
{ retry maxi nunt
secure: Bool ean; {for initiator, TRUE if session is }

{ aut henti cat ed}
{for recipient, TRUE i f session was }
{ authenti cat ed}

sessi onKey: Aut hKeyPtr; {encryption key for session}
credential sSize: Longint; {length of credential s}
credenti al s: Ptr; {pointer to credenti al s}
wor kspace: Ptr; {poi nter to workspace for }

{ connection. Align on }
{ even boundary and }
{ length = sdspWrkSi ze}

reci pi ent: Aut hl dentity; {identity of recipient }
{ or initiator if active node}
i ssueTi ne: UTCTi ne; {tinme when credentials were issued}
expiry: UTCTi ne; {tinme when credentials expire}
initiator: Recordl DPtr; {RecordI D of initiator returned in }
{ the buffer pointed to by this field}
hasl nt ermedi ary: Bool ean; {set if credentials has an }
{ internmnediary}
intermediary: Recordl DPt r; {Record ID of intermnediary returned}
END;
C Summary
Constants

/*wor kspace used internally by ASDSP for the sdspOpen call*/

#def i ne sdspWorkSi ze 2048 /*size of ASDSP wor kspace*/
enuni /*ADSP routine sel ectors*/
dspl ni t = 255, /*create a new connection end*/
dspRenove = 254, /*renmove a connection end*/
dspQOpen = 253, /*open a connection*/
dspd ose = 252, /*cl ose a connection*/
dspCLI ni t = 251, /*create a connection |listener*/
dspCLRenbve = 250, /*renove a connection |listener*/
dspCLLi sten = 249, /*post a |listener request*/

5-82 Summary of ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

dspCLDeny
dspSt at us
dspRead
dspWite
dspAttention
dspOpti ons
dspReset
dspNewCl D

sdspOpen

enum {
ocRequest

ocPassi ve
ocAccept

ocEst abl i sh

enum {
sLi st eni ng
sPassi ve

sQpeni ng

sOpen
s osi ng
sC osed

/ *ASDSP end- of - message and
enum {

dspEQOVBI t

dspEncrypt Bi t

enum {
dspEOMVask
dspEncrypt Mask

b

Summary of ADSP

= 248,
= 247,
= 246,
= 245,
= 244,
= 243,
= 242,
= 241,

= 229;

= 4,
= 5’
= 6}’

/*an open-connection request*/
/*get status of connection end*/
/*read data fromthe connection*/
/*write data on the connection*/
/*send an attention nessage*/
/*set connection end options*/
/*forward reset the connection*/
/*generate a CID for a */

/* connection end*/

/*open a secure connection*/

/*ADSP connecti on- openi ng nodes*/
/*request a connection with a */
/* renote connection end*/

/*wait for a connection request */
/* fromrenmote connection end*/

/*accept request as delivered by */

/* listener*/
/ *consi der connection to be */
/* open*/

/*ADSP connection end states*/
/*for connection |isteners*/
/*wai ting for a connection */
/* request fromrenote */

/* connection end*/

/ *requesting a connection */

/* with renmpte connection end*/
/*connection is open*/
/*connection is being torn down*/
/*connection end state */

/* is closed*/

encrypt flags and nmasks*/

0,
1};

1<<dspEOMBI t ,
l<<dspEncryptBit

/*set if EOM at end of wite*/
/*set to encrypt nessage*/

5-83

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

enum { /*ADSP client event flags*/
eCd osed = $80, /*received connection-cl osed */
/* event*/
eTear Down = $40, /*cl osed due to broken */
/* connection*/
eAttention = $20, /*received attention nessage*/
eFwdReset = $10}; /*received forward reset event*/
enum { /*m scel | aneous ADSP const ant s*/
att nBuf Si ze = 570, /*size of client attention */
/* buffer*/
m nDSPQueueSi ze = 100} ; /*m ni mum si ze of receive or */

/* send queue*/

enum { [*driver control ioResults*/
err Ref Num = -1280, /*bad connection refNunt/
errAborted = -1279, /*control call was aborted*/
errState = -1278, /*bad connection state for this */
/* operation*/
err Qpeni ng = -1277, / *open connection request */
[* failed*/
errAttention = -1276, /*attention nessage too | ong*/
er r FwdReset = -1275, /*read term nated */
/* by forward reset*/
er r DSPQueueSi ze = -1274, /*DSP read/wite queue */
/* too snmall*/
err OpenDeni ed = -1273}; /*open connection request */
/* deni ed*/
Data Types

The ADSP Connection Control Block Record

struct TRCCB {

unsi gned char *ccbLi nk; /*link to next CCB*/

unsi gned short ref Num /*reference nunber*/

unsi gned short st at e; /*state of the connection end*/
unsi gned char user Fl ags; /*user flags for connection*/
unsi gned char | ocal Socket ; /*l ocal socket nunber*/

Addr Bl ock r enot eAddr ess; /*renote end internet address*/
unsi gned short at t nCode; /*attention code received*/
unsi gned short attnSi ze; /*size of attention data*/

5-84 Summary of ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

unsi gned char *attnPtr; /*pointer to attention data*/
unsi gned char reserved[220] ; /*reserved*/

b

t ypedef struct TRCCB TRCCB;
t ypedef TRCCB * TPCCB;

The Address Block Record

struct AddrBl ock {
short aNet ; / *net wor k nunber*/
unsi gned char aNode; /*node | D*/
unsi gned char aSocket ; / *socket nunber*/

}s

t ypedef struct AddrBl ock Addr Bl ock

Parameter Block for dspInit and dspCLInit

struct TRinitParans {

TPCCB ccbPtr; /*pointer to connection control bl ock*/
ProcPtr user Rout i ne; /*client routine to call on event*/
unsi gned short sendQSi ze; /*size of send queue (0..64K bytes)*/
unsi gned char *sendQueue; /*client passed send queue buffer*/
unsi gned short recv(si ze; /*size of receive queue */

/* (0..64K bytes)*/
unsi gned char *recvQueue; /*client passed receive queue buffer*/
unsi gned char *attnPtr; /*client passed receive attention */

/* buffer*/
unsi gned char | ocal Socket ; /*l ocal socket nunber*/

b

typedef struct TR nitParanms TRi nitParans;

Parameter Block for dspOpen, dspCLListen, and dspCLDeny

struct TRopenParans {

unsi gned short | ocal ClI D /*l ocal connection |D*/

unsi gned short r enot eCl D, /*renote connection | D¢/

Addr Bl ock r enot eAddr ess; /*address of renote end*/

Addr Bl ock filterAddress; /*address filter*/

unsi gned | ong sendSeq; /*1 ocal send sequence nunber*/
unsi gned short sendW ndow; /*send w ndow size*/

unsi gned | ong recvSeq; /*recei ve sequence nunber*/

Summary of ADSP 5-85

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

unsi gned | ong att nSendSeq; /*attention send sequence numrber*/
unsi gned | ong att nRecvSeq; /*attention receive sequence */
[* nunber*/
unsi gned char ocMode; /*open connecti on node*/
unsi gned char oclnterval ; /*open connection request retry */
/* interval */
unsi gned char ocMaxi mum /*open connection request retry */
}; /* maxi munm/

typedef struct TRopenParans TRopenPar ans;

Parameter Block for dspClose and dspRemove

struct TRcl oseParans {
unsi gned char abort; /*abort connection inmediately if nonzero*/

b

typedef struct TRcl oseParans TRcl osePar ans;

Parameter Block for dspStatus

struct TRstatusParans {

TPCCB ccbPtr; /*pointer to ccb*/
unsi gned short sendQPendi ng; /*pending bytes in send queue*/
unsi gned short sendQFr ee; /*avail abl e buffer space in send */
/* queue*/
unsi gned short recvQPendi ng; /*pending bytes in receive queue*/
unsi gned short recvQFr ee; /*avail abl e buffer space in */
}; /* receive queue*/

typedef struct TRstatusParans TRst at usPar ans;

Parameter Block for dspRead and dspWrite

struct TRi oParans {

unsi gned short r eqCount ; /*request ed nunber of bytes*/

unsi gned short act Count ; [*actual nunmber of bytes*/

unsi gned char *dataPtr; /*pointer to data buffer*/

unsi gned char eom /*indicates |ogical end of message*/
unsi gned char fl ush; /*send data now+/

}s

typedef struct TRi oParans TRi oPar ans;

5-86 Summary of ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Parameter Block for dspAttention

struct TRattnParans {

unsi gned short at t nCode;
unsi gned short attnSi ze;
unsi gned char *at t nDat a;

unsi gned char attnlnterval ;

}s

/*client attention code*/

/*size of attention data*/
/*pointer to attention data*/
/*retransmt tinmer in 10-tick */
/* interval s*/

typedef struct TRattnParans TRattnPar ans;

Parameter Block for dspOptions

struct TRoptionParans {

unsi gned short sendBl ocki ng;

unsi gned char sendTi ner;
unsi gned char rtnt Tinmer;
unsi gned char badSegMax;
unsi gned char useCheckSum

b

/*quantum f or data packets*/

/*send timer in 10-tick interval s*/
/[*retransmt timer in 10-tick */

/* interval s*/

/*threshold for sending retransmt */
/* advi ce*/

/*use ddp packet checksunt/

t ypedef struct TRopti onParans TRopti onPar ans;

Parameter Block for dspNewCID

struct TRnewci dPar ans {
unsi gned short newci d;

b

/ *new connection |ID returned*/

typedef struct TRnewci dParans TRnewci dPar ans;

The DSP Parameter Block

struct DSPPar anBl ock {

struct CEl em *qLi nk;

short gType;

short i oTr ap;

Ptr i oCrdAddr ;
ProcPtr i oConpl eti on;
OSEr r i oResul t;
char *i oNanmePtr;
short i oVRef Num

Summary of ADSP

/*reserved*/

/*reserved*/

/*reserved*/

/*reserved*/

/*pointer to conpletion routine*/
/*routine result*/

/*reserved*/

/*reserved*/

5-87

(4SAv) 10901014 Weans ereqd xreLaddy -

uni

b

t ypedef struct

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

short

short

| ong

short

on{

TRi ni t Par ans
TRopenPar ans
TRcl osePar ans
TRi oPar ans
TRat t nPar ans
TRst at usPar ans
TRopt i onPar ans
TRnewci dPar ans

P

i 0CRef Num
csCode;
gSt at us;
ccbRef Num

i nitPararms;
openPar ans;
cl osePar ans;
i oPar ans;

at t nPar ans;
st at usPar ans;
opt i onPar ans;
newCl DPar arns;

DSPPar anBl ock DSPPar anB

t ypedef DSPPar anBl ock * DSPPBPt r

The ASDSP Parameter Block

struct TRSecureParans {

unsi gned short
unsi gned short

Addr Bl ock
Addr Bl ock
unsi gned | ong
unsi gned short
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned char
unsi gned char
unsi gned char
Bool ean
Aut hKeyPt r
unsi gned
Ptr

5-88

| ocal Cl D

r enot eCl D

r enot eAddr ess;
filterAddress;
sendSeq;

sendW ndow,
recvSeq;

att nSendSeq;
at t nRecvSeq;

ochMbde;
ocl nterval ;

ocMaxi mum
secure;

sessi onKey;

credenti al s;

Summary of ADSP

[/ *ADSP dri ver
/ *ADSP dri ver
/ *reserved*/

/*dsplnit,
/ *dspOpen,
/ *dspd ose

ref Num/
control

dspCLInit*/
dspCLLi st en,
dspRenove*/

/*dspRead, dspWite*/
/*dspAttention*/

/*dspSt at us*/
/*dspOpti ons*/
/ *dspNewCl D*/

ock;

/ *| ocal

code*/

dspCLDeny*/

connection | D¢/

/*renote connection | D*/

/ *addr ess of
/*address filt
/*1 ocal
/*send wi ndow

er*/

size*/

renote end*/

send sequence nunber*/

/*recei ve sequence nunber*/
/*attention send sequence numrber*/
/*attention receive sequence */

!/ * nunber*/

/*open connecti on node*/

/ *open connection request

/* interval */

/*open connection request

[* maxi munt/

retry */

retry */

/*TRUE i f session was */

/* aut henti cat

ed*/

/*encryption key for session*/
| ongcredenti al sSi ze;
/*1 ength of credential s*/

/*pointer to credential s*/

Aut

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

hidentity

UTCTi e
UTCTi me
Recor dl DPt r

Bool ean

Recordl DPt r

b

wor kspace;

reci pi ent;

i ssueTi ne;
expiry;
initiator;

hasl nt er medi ary;

i nternediary;

The TRSecureParams Record

/*pointer to workspace for */

/* connection. align on even */
/* boundary and | ength equals */
/* sdspWorkSi ze*/

/*identity of recipient */

/* (or initiator if active node)*/
/*when credentials were issued*/
/*when credentials expire*/
/*pointer to Recordl D of */

/* initiator returned*/

/*is set if credentials */

/* have an internediary*/
/*pointer to Recordl D of */

/* internmediary returned*/

t ypedef struct TRSecureParans TRSecur ePar ans;

struct SDSPPar anBl ock {

uni

struct QEl em
short

short

Ptr

ProcPtr

OSEr r
char

short
short
short
| ong

short

on {

TRi ni t Par ans
TRopenPar ans
TRcl osePar ans
TRi oPar ans
TRat t nPar ans
TRst at usPar ans
TRopt i onPar ans

*qLi nk;
qType;

i oTr ap;

i oCndAddr ;

i oConpl eti on;

i oResul t;
*i oNamePtr ;
i oVRef Num
i 0CRef Num
csCode;
gSt at us;
ccbRef Num

i ni tPararms;
openPar ans;
cl osePar ans;
i oPar ars;

at t nPar ans;
st at usPar ans;
opt i onPar arns;

Summary of ADSP

/*reserved*/
/*reserved*/
/*reserved*/
/*reserved*/

/[*pointer to conpletion routine*/
/*routine result*/
/*reserved*/
/*reserved*/

/*ADSP driver refNunt/
/*ADSP driver control
/*ADSP internal use*/
/*connection end ref Nunt/

code*/

/*dsplnit, dspCLInit*/

/*dspOpen, dspCLLi sten, dspCLDeny*/
/*dspd ose, dspRenove*/

/*dspRead, dspWite*/
/*dspAttention*/

/*dspSt at us*/

/*dspOpti ons*/

5-89

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

TRnewci dPar ans
TRSecur ePar ans

}ou
}s

newCl DPar arms;
secur ePar ans;

/ *dspNewCl D*/
/ *dspQpenSecur e*/

t ypedef struct SDSPParanBl ock SDSPPar anBl ock;
t ypedef SDSPParanBl ock * SDSPPBPt r

Assembly-Language Summary

Constants

ADSP Queue Element Equates and Sizes

csQSt at us
csCCBRef

Command Codes

dspl ni t
dspRenove
dspQOpen
dspd ose
dspCLI ni t
dspCLRenbve
dspCLLi sten
dspCLDeny
dspSt at us
dspRead
dspWite
dspAttention
dspOpti ons
dspReset
dspNewCl D

sdspOpen

5-90 Summary of ADSP

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

CSPar am
csQSt at us+4

255
254
253
252
251
250
249
248
247
246
245
244
243
242
241
229

; ADSP i nternal use
;refnum of ccb

;create a new connection end

; renpve a connection end

;open a connection

;cl ose a connection

;create a connection |istener
;renpve a connection |istener
;post a |istener request

; deny an open connection request
;get status of connection end
;read data fromthe connection
;wite data on the connection
;send an attention nessage

; set connection end options
;forward reset the connection
;generate a cid for a connection end
; Open a secure connection

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Open Connection Modes

ocRequest EQU 1 ; request a connection with renote
ocPassi ve EQU 2 ;wait for a connection request from
; renote
ocAccept EQU 3 ;accept request as delivered by
; listener
ocEst abl i sh EQU 4 ; consi der connection to be open

Connection States

sLi st eni ng EQU 1 ; for connection listeners
sPassi ve EQU 2 ;waiting for a connection request
; fromrenote
sQOpeni ng EQU 3 ;requesting a connection with renote
sOpen EQU 4 ;connection is open
sCl osi ng EQU 5 ;connection is being torn down
sC osed EQU 6 ;connection end state is closed

Client Event Flags (Bit-Mask)

eCl osed EQU $80 ; recei ved connection cl osed advice
eTear Down EQU $40 ;cl osed due to broken connection
eAttention EQU $20 ;received attenti on nessage
eFwdReset EQU $10 ;received forward reset advice

Miscellaneous Equates

att nBuf Si ze EQU 570 ;size of client attention nessage
m nDSPQueueSi ze
EQU 100 ; moni mum si ze for both receive and
; send queues
sdspWr kSi ze EQU 2048 ; size of ASDSP wor kspace

ASDSP Encrypt and End-of-Message Flags and Masks

dspEQOVBI t EQU 0 ;set if EOM at end of wite
dspEncryptBit EQU 1 ;set to encrypt nessage
dspEncrypt Mask EQU $1 ;mask for setting the encrypt bit
dspEOWASsk EQU $2 ;mask for setting the EOM bit

Summary of ADSP 5-91

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Data Structures

ADSP Connection Control Block Data Structure

ccbLi nk

ref Num

state
user Fl ags

| ocal Socket

r enot eAddr ess
at t nCode
attnSi ze
attnPtr
reserved

long
word
word
byte

byte
long
word
word
long

220 bytes

link to next CCB

reference number

state of the connection end

user flags for connection

local socket number

internet address of remote end
attention code received

size of received attention data
pointer to received attention data
reserved

DPS Parameter Block Common Fields for ADSP and ASDSP

0
4
6
8
12
16
18
22
24
28
32

gLi nk
qType

i oTrap
oCndAddr
oConpl eti on
oResul t
oNanePt r
oVRef Num
0CRef Num
qSt at us
ccbRef Num

long
word
word
long
long
word
long
word
word
long
word

reserved

reserved

reserved

reserved

address of completion routine
result code

reserved

reserved

driver reference number
reserved

reference number of CCB

dsplnit and dspCLInit Parameter Variant

26
34
38
42
44
48
50
54
58

csCode
ccbPtr

user Rout i ne
send(Si ze
sendQueue
recvQsi ze
recvQueue
attnpPtr

| ocal Socket

word
long
long
word
long
word
long
long
byte

dspOptions Parameter Variant

16
24
26
34
38
39

5-92

i oResul t

i oCRef Num
csCode
sendBl ocki ng
badSeqgMax
useCheckSum

word
word
word
word
byte
byte

Summary of ADSP

dspl nit ordspCLI ni t

pointer to CCB

pointer to routine to call on connection events
size in bytes of the send queue

pointer to send queue

size in bytes of the receive queue

pointer to receive queue

pointer to buffer for incoming attention messages
DDP socket number for this connection end

result code

driver reference number

always dspOpt i ons
send-blocking threshold

threshold to send retransmit advice
DDP checksum flag

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

dspOpen, dspCLListen, and dspCLDeny Parameter Variant

26 csCode word dspOpen, dspCLLi st en, or dspCLDeny
34 | ocal CI D word ID of this connection end

36 renmot eCl D word ID of remote connection end

38 renot eAddr ess long remote internet address

42 filterAddress long filter for open-connection requests
46 sendSeq long initial send sequence number

50 sendW ndow word initial size of remote receive queue
52 recvSeq long initial receive sequence number

56 attnSendSeq long attention send sequence number
60 attnRecvSeq long attention receive sequence number
64 ocMde byte connection-opening mode

65 ocl nterval byte interval between open requests

66 ocMaxi mum byte retries of open-connection request

sdspOpen Parameter Variant

26 csCode word sdspQOpen

34 | ocal CI D word ID of this connection end

36 renmot eCl D word ID of remote connection end

38 renot eAddr ess long remote internet address

42 filterAddress long filter for open-connection requests

46 sendSeq long initial send sequence number

50 sendW ndow word initial size of remote receive queue

52 recvSeq long not used for ASDSP

56 attnSendSeq long attention send sequence number

60 attnRecvSeq long not used for ASDSP

64 ocMde byte connection-opening mode

65 ocl nterval byte interval between open requests

66 ocMaxi mum byte retries of open-connection request

68 secure word flag that determines if ASDSP authenticates

the connection

70 sessi onKey long pointer to the encryption key for the session

74 credential sSi ze long length of credentials

78 credentials long pointer to credentials

82 wor kspace long pointer to workspace for connection

86 reci pi ent long identity of recipient

90 i ssueTi nme long time when credentials were issued

94 expiry long time when credentials expire

98 initiator long pointer to record ID of initiator
102 hasl nt er nedi ary word TRUE if credentials have an intermediary
104 i nternedi ary long pointer to record ID of intermediary

dspNewCID Parameter Variant

26 csCode word always dspNewCl D
34 newCl D word ID of new connection

dspClose, dspRemove, and dspCLRemove Parameter Variant

26 csCode word dspCl ose, dspRenpve, or dspCLRenpve
34 abort byte abort send requests or connection listener if not 0

Summary of ADSP 5-93

(4SAv) 10901014 Weans ereqd xreLaddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

dspStatus Parameter Variant

26 csCode word always dspSt at us

34 st at usCCB pointer pointer to CCB

38 sendQPendi ng word bytes waiting to be sent or acknowledged
40 sendQFr ee word available send queue in bytes

42 recvQPendi ng word bytes waiting to be read from queue

44 recvQFree word available receive queue in bytes

dspRead and dspWrite Parameter Variant

26 csCode word dspRead ordspWite

34 reqCount word requested number of bytes

36 act Count word actual number of bytes read or written

38 dat aPtr pointer pointer to data buffer

42 eom byte for ADSP: 1 if end of message; 0 otherwise

for ASDSP: bit 0 = end of message; bit 1 turns on
encryption, if set
43 flush byte 1 to send data now; 0 otherwise

dspAttention and dspReset Parameter Variant

26 csCode word dspAttenti onordspReset
34 at t nCode word client attention code

36 attnSi ze word size of attention data in bytes
38 attnDat a pointer pointer to attention data

Result Codes

noErr 0 No error or unrecognized event code

ddpSkt Er r 91 Error opening socket

err QpenDeni ed -1273 Open request denied by recipient

er r DSPQueueSi ze -1274 Send or receive queue is too small

er r FwdReset -1275 Read terminated by forward reset

errAttention -1276 Attention message too long

err Qpeni ng -1277 Attempt to open connection failed

errState -1278 Bad connection state for this operation

errAborted -1279 Request aborted by dspRernove or
dspd ose routine

err Ref Num -1280 Bad connection reference number

kOCEUnsuppor t edCr edent i al sVer si on -1543 Credentials version not supported

kOCEBadEncr ypt i onMet hod -1559 During the authentication process, the

ASDSP implementations could not agree
on an encryption method to be used
(ASDSP can support multiple stream
encryption methods. In Release 1, only
RC4 and “no encryption” are supported.)

k OCENoASDSPWr kSpace -1570 You passed NI L for the workspace
parameter
kOCEAut hent i cati onTr oubl e -1571 Authentication process failed

5-94 Summary of ADSP

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to AppleTalk TOC
	 Introduction to AppleTalk
	 AppleTalk Utilities TOC
	 AppleTalk Utilities
	 Name-Binding Protocol (NBP) TOC
	 Name-Binding Protocol (NBP)
	 Zone Information Protocol (ZIP) TOC
	 Zone Information Protocol (ZIP)
	 AppleTalk Data Stream Protocol (ADSP) TOC
	AppleTalk Data Stream Protocol (ADSP)
	About ADSP
	Connections, Connection Ends, and Connection State...
	Connection Listeners
	Reliable Delivery of Data
	Unsolicited ADSP Events

	About ASDSP
	The Authentication Process
	The Data Encryption Feature

	Using ADSP
	Allocating Memory for ADSP
	Creating and Using a Connection Control Block
	Opening and Maintaining an ADSP Connection
	Creating and Using a Connection Listener
	Writing a User Routine for Connection Events

	Using ASDSP
	Opening a Secure Connection
	From the Initiator’s End
	From the Recipient End
	Sending Encrypted Data Across a Secure Connection

	ADSP Reference
	Data Structures
	The ADSP Connection Control Block Record
	The Address Block Record
	The DSP Parameter Block
	The ASDSP Parameter Block
	The TRSecureParams Record

	Routines
	Establishing and Terminating an ADSP Connection
	Establishing and Terminating an ADSP Connection Li...
	Maintaining an ADSP Connection and Using It to Exc...

	Summary of ADSP
	Pascal Summary
	Constants
	Data Types

	C Summary
	Constants
	Data Types

	Assembly-Language Summary
	Constants
	Data Structures

	Result Codes

	 AppleTalk Transaction Protocol (ATP) TOC
	 AppleTalk Transaction Protocol (ATP)
	 Datagram Delivery Protocol (DDP) TOC
	 Datagram Delivery Protocol (DDP)
	 AppleTalk Session Protocol (ASP) TOC
	 AppleTalk Session Protocol (ASP)
	 AppleTalk Filing Protocol (AFP) TOC
	 AppleTalk Filing Protocol (AFP)
	 Link-Access Protocol (LAP) Manager TOC
	 Link-Access Protocol (LAP) Manager
	 Ethernet, Token Ring, Fiber Distribution Data Interface TOC
	 Ethernet, Token Ring, Fiber Distribution Data Interface
	 Multinode Architecture TOC
	 Multinode Architecture
	 Glossary
	 Index
	 Colophon

