



6/19/98
Technical Publications
© Apple Computer, Inc. 1998



M A C O S R U N T I M E
F O R J A V A

Using JBindery

JBindery 2.0.1
For MRJ 2.0



 Apple Computer, Inc. 6/19/98



Apple Computer, Inc.
© 1996-1998 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the ÒkeyboardÓ Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 InÞnite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Helvetica and Palatino are
registered trademarks of

Linotype-Hell AG and/or its
subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Java is a trademark of Sun
Microsystems, Inc.
UNIX is a registered trademark in
the United States and other
countries, licensed exclusively
through X/Open Company, Ltd.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD ÒAS
IS,Ó AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modiÞcation,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you speciÞc legal rights,
and you may also have other rights
which vary from state to state.

Contents



 Apple Computer, Inc. 6/19/98

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 Using JBindery
How to Use This Document 5
Changes from Version 2.0 6
System Requirements 6
How JBindery Works 7
JBindery Features 7

The Command Panel 8
The Classpath Panel 11

Adding an Alias 13
Adding a Class Path Manually 13
Adding a Virtual File System 14

The Properties Panel 16
The Appearance Panel 17
The Security Panel 18
The Application Panel 20

Examples 21
Packaging a Java Application 21
Executing a Java Application 24

Mac OS Resources 26
Splash Screens 26
Custom Icons 26
3

4 Contents

 Apple Computer, Inc. 6/19/98

Using JBindery 1

JBindery is an application that you use to package or execute Javaª
applications on the Mac OS platform. You can use JBindery to do any of the
following:

■ package Java applications so that they can be launched like any Mac OS
application

■ execute previously compiled Java applications or applets

■ save settings (for example, parameter lists or security levels) for frequently
run Java applications

For a listing of changes from the previous version of JBindery, see ÒChanges
from Version 2.0Ó (page 6).

How to Use This Document 1

To use JBindery, you Þrst should read the section ÒJBindery FeaturesÓ (page 7).
Then you can use the ÒrecipesÓ that follow in the section ÒExamplesÓ (page 21)
to package or execute your Java application.

This document assumes that you have general knowledge of the Java language
and terminology (Òvirtual machine,Ó Òproperties,Ó and so on). For further
information about the Java language or low-level details of the Java virtual
machine, you should consult JavaSoft documentation, which you can access
through the JavaSoft home page:

http://java.sun.com/

You do not need any Mac OS programming experience to use JBindery.
However, in cases where you might want to add Mac OSÐspeciÞc features to
your standalone Java application (for example, a custom desktop icon), you
may need to use some Mac OS development tools (such as the ResEdit resource
editor). To create polished applications with the proper Mac OS look and feel,
you must follow the speciÞcations provided in the book Macintosh Human
Interface Guidelines available at the following Web site:

http://www.apple.com/developer/

For more information about AppleÕs use of Java technology, see the following
Web page:

http://developer.apple.com/java/
How to Use This Document 5
 Apple Computer, Inc. 6/19/98

Using JBindery

Changes from Version 2.0 1

Although the basic functionality of JBindery is the same, this version includes
some organizational changes and a few new features:

■ The functionality of the Virtual File System panel is now combined with the
Classpath panel.

■ JBindery now has a preferences Þle which can specify default settings to use
at startup.

■ JBindery now prompts you to save settings changes before quitting.

The new version of JBindery cannot be used with versions of MRJ prior to 2.0.
However, applications built with older versions of JBindery will still run under
MRJ 2.0.

Note
JBindery 2.0 (released with MRJ 2.0) did not contain any
feature enhancements over the original version of JBindery
released with MRJ 1.5 ◆

System Requirements 1

JBindery uses the Mac OS Runtime for Java (MRJ) environment to execute Java
applications. To use JBindery, your system must have MRJ 2.0 or later installed.
You can download the most recent version of MRJ from the Apple Java Web
page:

http://developer.apple.com/java/

To use MRJ 2.0, your computer must have a 68040 or PowerPC microprocessor
with at least 24 MB of RAM, 16 MB of which must be physical (that is, not
virtual memory), and 13 MB of free disk space. System 8.0 or later is suggested,
although you can install MRJ 2.0 on System 7.6.1 by specifying a custom install.
Computers running with a 68040 microprocessor must have 32-bit addressing
turned on (as speciÞed in the Memory control panel).
6 Changes from Version 2.0

 Apple Computer, Inc. 6/19/98

Using JBindery

How JBindery Works 1

Java programs must run in a virtual machine that is created on the host
platform. The virtual machine uses services provided by the host platform to
map graphical information provided by the Abstract Window Toolkit (AWT) to
the user-visible screen and to pass any user input to the Java program. JBindery
provides these services to your Java program. For example, if you use JBindery
to execute a Java application, JBindery instantiates a Java virtual machine and
then calls the Java applicationÕs main method. After the Java application quits,
JBindery performs cleanup (removing the virtual machine and so on) and quits.

If you create a standalone Java application, JBindery packages a small wrapper
Mac OS application in the Java application Þle. Creation and removal of the
virtual machine is then handled transparently when you execute the packaged
Java application.

Note
JBindery relies on the JManager function library (as
provided with MRJ 2.0 and later) to interact with Java
programs. For detailed information about these Mac OS
functions, see the document Programming with JManager. ◆

JBindery Features 1

Launching JBindery brings up a number of panels that contain information
about the Java program you want to execute. To switch among the various
panels, select any of the panel icons, which are displayed along the left side of
any panel.

Many settings on the JBindery panels correspond to options used on operating
systems that have a command line interface. For example, the options in the
UNIX command line

java MyClass -classpath myDirectory:MyClasses -Dbanana=yellow -verify

can be set in the Classpath, Properties, and Security panels in JBindery.
How JBindery Works 7
 Apple Computer, Inc. 6/19/98

Using JBindery

If you want to change the default settings that appear when you launch
JBindery, you can do so by modifying the settings and selecting the Save
Defaults menu item as shown in Figure 1-1.

Figure 1-1 The Save Defaults menu item

The new default settings are stored in the Þle JBindery Prefs in the Preferences
folder. You can restore the original default settings by throwing away the
preferences Þle.

The Command Panel 1

Figure 1-2 shows the Command panel of JBindery. This is the default panel that
appears when you launch JBindery.
8 JBindery Features

 Apple Computer, Inc. 6/19/98

Using JBindery

Figure 1-2 The Command panel

The Command panel determines the Java class to execute, the parameters to
pass to the classÕs main method, and the locations to direct console input or
output.

■ The Class Name Þeld should contain the name of the class you want to
execute. This name should have the form package.package.classname
without a .class extension. If desired, you can specify a slash (/) instead of
the period (.) as a delimiter.

The class you specify must contain a method with one of the following
declarations:
public static void main (String args[])
public static void main()

If you launch JBindery by dragging a class Þle onto the JBindery icon,
JBindery assumes the class name is the name of the Þle without the
extension, and places this name in the Class Name Þeld. For example, if the
Þle is biology.class, the class name is assumed to be biology. If the name of
the Þle does not correspond to the class containing the main method, you
should enter the class name manually.
JBindery Features 9
 Apple Computer, Inc. 6/19/98

Using JBindery

■ The Optional Parameters Þeld lets you specify text parameters to pass to the
main method. JBindery makes assumptions based on the parameters as
follows:

■ If no parameters are speciÞed, JBindery attempts to execute the main()
method with no arguments. If no main() method is found in the class,
JBindery creates a zero-length string array and calls the main (String
args[]) method.

■ If you specify parameters, JBindery attempts to execute the main (String
args[]) method. If no main (String args[]) method exists in the class,
then JBindery calls the main() method with no parameters.

■ If JBindery cannot Þnd any main method, it throws an exception.
JBindery considers spaces, tabs, and carriage returns as parameter
delimiters. If you want to include such characters as part of a parameter, you
must enclose the string in quotation marks (“ ”).
If you want to include quotation marks in your parameter, you must precede
each instance with a backslash (\). For example, you would specify the
string He said, “Hi” as “He said, \“Hi\””.
To specify Unicode strings, you should precede the Unicode value with \x.

■ The Redirect Stdout pop-up menu lets you redirect any console output (that
is, any output that the Java application writes to System.out or System.err).
Selecting the pop-up menu displays the following options:

■ Message Window: Console output appears in a plain text window.
■ Nowhere: Console output is ignored.
■ To File...: Console output is sent to a new Þle, overwriting an existing Þle

if necessary. Selecting this option brings up a save dialog box that allows
you to specify the name and location of the output Þle.

■ Append File...: Console output is appended to an existing Þle (or a new
one if it does not currently exist). Selecting this option brings up a dialog
box that allows you to specify the name and location of the output Þle.

■ The Redirect Stdin pop-up menu speciÞes the source of any console input
(that is, any input that comes from System.In). Selecting the pop-up menu
displays the following options:

■ Nowhere: No input is taken.
■ Message Window: The user is prompted to enter text in a plain text

window. This is the same window that displays console output.
10 JBindery Features

 Apple Computer, Inc. 6/19/98

Using JBindery

■ From File: The speciÞed Þle is treated as the input source. Selecting this
option brings up a dialog box that allows you to specify the name and
location of the input Þle.

Along the bottom of the panel there are two buttons you use to control
JBindery actions. These buttons appear on every panel.

■ The Save Settings button brings up a save dialog box. You use this button to
save your application settings as a settings Þle or as part of a packaged
application.

■ The Run button executes your Java application with the speciÞed settings.

The Classpath Panel 1

Figure 1-3 shows the Classpath panel of JBindery, which displays the class
paths used to search for Java classes.

By default, JBindery searches the MRJ Libraries folder when looking for
classes. However, you can use the Classpath panel to specify additional class
paths in a manner similar to setting the CLASSPATH Java environment variable.
Any class paths you specify do not replace the default, but are appended to the
class path list. These path entries are searched in the order they appear in the
list. The MRJ Libraries folder is always searched last.
JBindery Features 11
 Apple Computer, Inc. 6/19/98

Using JBindery

Figure 1-3 The Classpath panel

You can add any of the following entries to the class path list:

■ An alias to a folder. An alias is a reference that lets you access a Þle or a
folder stored in another location. See ÒAdding an AliasÓ (page 13) for more
information.

■ An alias to a .zip or .jar package

■ An absolute path to a Þle, folder, or package

■ A path to a Þle, folder, or package relative to the application.

■ A virtual Þle system. A virtual Þle system is useful only if you want to
package all the Þles that make up your Java application in one package. See
ÒAdding a Virtual File SystemÓ (page 14) for more information.

Note that if your class Þles have names longer than the 31 characters allowed
by the Mac OS, you can bypass this limitation by storing them in a .zip or .jar
archive.

You can change the search position of any item in the class path list by selecting
it and then using the up and down arrows. You can remove a selected item by
12 JBindery Features

 Apple Computer, Inc. 6/19/98

Using JBindery

using the Delete button. Clicking the EditÉ button allows you to edit the
current selection.

Adding an Alias 1

An alias is a small Þle that represents another Þle stored in a different location.
Typically, you use them to simplify organizing Þles or to allow easy access to
large or dynamic Þles that reside on a Þle server. In most cases, you can handle
an alias just as you would the original Þle. For example, you could open the
original Þle by double-clicking on its alias.

Aliases provide a quick and easy way to set up class paths if you plan to use
JBindery to simply execute a Java application (for example, during
development). However, aliases are generally not portable. Since aliases often
store information about the local Þle system (the name of the hard drive, and so
on), the Finder may not be able to resolve the alias if it is moved to another
computer. For this reason, you should not add class paths as aliases if you plan
to run your Java application on multiple computers.

You can add an alias to your class path using any of the following methods:

■ Using the Add Folder button. Doing so brings up a dialog box that lets you
specify a folder to add to the class path. The folder you choose must contain
class Þles or be the root of a directory hierarchy that mirrors a class hierarchy.

■ Using the Add .zip File button. Doing so brings up a dialog box that lets you
specify an uncompressed .zip or .jar Þle that contains class Þles.

■ Drag a class Þle, folder, or .zip Þle onto the class path list from the Finder.
JBindery automatically adds the parent folder of the class Þle to the list as an
alias. Similarly, folders or .zip Þles are added to the list as aliases. You can
also add aliases by dragging a class Þle or package onto the JBindery icon.

Adding a Class Path Manually 1

The Add Manually button brings up a dialog box as shown in Figure 1-4. You
must specify the location of a folder or an uncompressed .zip or .jar file as a
Þle-based URL . You can also use this dialog box to specify unexpanded .zip or
.jar Þles contained in a virtual Þle system, which is described in ÒAdding a
Virtual File SystemÓ (page 14).

The disk name /$APPLICATION/ is an Apple-speciÞc designation that you can
use in your Þle-based URL to indicate the folder containing the running
application. For example, if you wanted to include a folder NewClasses
JBindery Features 13
 Apple Computer, Inc. 6/19/98

Using JBindery
contained in applicationÕs folder, you would designate the URL as file:///
$APPLICATION/NewClasses. The /$APPLICATION/ designation corresponds to the
location of JBindery or the packaged Java application, not the location of the
Java classes.

Adding classes manually allows for greater portability across computers than
using aliases. The class path file:///$APPLICATION/NewClasses will always
work as long as the NewClasses folder is in the same folder as the application.

Figure 1-4 The Add Manually dialog box

Adding a Virtual File System 1

In addition to specifying class paths to Þles or folders, you can specify a path to
a virtual Þle system (VFS). A virtual Þle system lets you package Java classes
and any other information your Java application requires (such as images or
sound clips) in one Þle. That is, you can store your Java application as one
easily portable package.

Items in a virtual Þle system are stored as though they were in a Þle hierarchy,
so the Java application can access them normally. For example, say you have a
Java program that requires two class Þles, Upper.class and Working.class, and
a JPEG image photo.jpg contained in a folder called Images. By specifying these
in a virtual Þle system, you can include all of these Þles in one application Þle
14 JBindery Features

 Apple Computer, Inc. 6/19/98

Using JBindery
and preserve the Þle hierarchy as well. Figure 1-5 compares a virtual Þle
system to a real one.

Note
The contents of a virtual Þle directory are stored in the
data fork of the application Þle as an uncompressed
read-only .zip archive. For more information about data
forks, see ÒMac OS ResourcesÓ (page 26). ◆

Figure 1-5 Real and virtual file systems

To create a virtual Þle system, you must do the following:

1. Add the root folder of the folder hierarchy to the class path list.

2. Select the folder in the class path list and click the Make VFS button.

For example, in Figure 1-5, the root folder is MyFolder. You can add MyFolder to
the class path list by dragging the folder to the list or by selecting the Add
FolderÉ button. Selecting MyFolder in the class path list and clicking the Make
VFS Button then makes MyFolder the virtual Þle system.

Note that only one folder may be designated as a virtual Þle system.

MyFolder

Images

Upper.class

photo.jpg
Working.class

Mac OS file system Virtual file system

$VFS

Upper.class

Working.class

Images/photo.jpg
JBindery Features 15
 Apple Computer, Inc. 6/19/98

Using JBindery
▲ W A R N I N G

The folder you designate as the root of your virtual Þle
system should contain only the Þles you want to package.
For example, you should make sure that neither JBindery
nor the resulting packaged application is contained within
the root folder. Doing so will cause your packaged
application to act unpredictably at runtime. ▲

The Expand .zip and .jar Files checkbox speciÞes whether you want to extract
Java classes from .zip and .jar Þles when packaging them in the application. For
example, say you have a .zip Þle Airline.zip that contains First.class and
Economy.class. If you donÕt specify expanding the .zip file, the packaged
application will only contain Airline.zip. Otherwise, JBindery extracts the Java
classes and places First.class and Economy.class in the packaged application.

In most cases you should choose to extract your Þles from .zip and .jar
packages. If you do not, however, you must manually add a class path to each
unexpanded package using the Add Manually dialog box (as shown in
Figure 1-4 (page 14). The class path should be preÞxed with file:///$VFS/.
Select the OK button when Þnished.

The Properties Panel 1

Figure 1-6 shows the Properties panel of JBindery. You use this panel to set text
properties to be added to the Java environment before calling the applicationÕs
main method. Adding property values using this panel is analogous to calling
the method java.lang.System.setProperties or specifying -Dproperty=value on a
UNIX command line.
16 JBindery Features

 Apple Computer, Inc. 6/19/98

Using JBindery
Figure 1-6 The Properties panel

You add a property as a property/value pair. For example, in Figure 1-6, the
property apple has the value red. The Add button adds the property/value pair
currently in the text Þeld to the properties list. The Delete button removes the
currently selected property from the list.

You can use the Properties panel to override the value of user.dir, which
indicates the current working directory. For example, you can set the user.dir
value to /$APPLICATION/MyStuff, which indicates the MyStuff subdirectory of
the applicationÕs directory.

The Appearance Panel 1

Figure 1-7 shows the Appearance panel of JBindery. You use this panel to
customize some aspects of the resulting packaged Java application.
JBindery Features 17
 Apple Computer, Inc. 6/19/98

Using JBindery
Figure 1-7 The Appearance panel

■ The Window Background Color Þeld selects the default color for the
window background. The Mac OS Window Manager uses this color to erase
the window. Clicking within the rectangle brings up a dialog box that lets
you choose a background color.

■ The Size Boxes Intrude checkbox determines whether the size box should
appear within the corner of the actual window. If the size boxes intrude, any
Abstract Window Toolkit components that would normally appear under
the size box are not drawn. If you do not check this box, an extra strip of
empty space is added to the bottom of the window to accomodate the size
box.

The Security Panel 1

Figure 1-8 shows the Security panel of JBindery. You use this panel to specify
some security measures for your Java application.
18 JBindery Features

 Apple Computer, Inc. 6/19/98

Using JBindery
Figure 1-8 The Security panel

■ The Verify Bytecodes checkbox speciÞes whether you want the code veriÞer
to check local Java bytecodes before execution. Checking this box is
analogous to selecting the -verify option in UNIX. If not checked, JBindery
still automatically checks any bytecodes obtained from a remote source
(such as over a network). Not checking this box is equivalent to specifying
the -verifyremote option in UNIX.

■ The HTTP Proxy checkbox speciÞes whether you want to use an HTTP
proxy. When checked, the Java application uses the HTTP proxy server you
specify (by name and port) whenever accessing an HTTP server.

■ The FTP Proxy checkbox speciÞes whether you want to use an FTP proxy.
When checked, the Java application uses the FTP proxy server you specify
(by name and port) when making FTP requests.

■ The Firewall Proxy checkbox speciÞes whether you want to use a Þrewall
proxy. When checked, the Java application uses the Þrewall proxy server
speciÞed (by name and port) when accessing servers outside the security
Þrewall.
JBindery Features 19
 Apple Computer, Inc. 6/19/98

Using JBindery
For more information about Java security measures, see the following web site:

http://java.sun.com/security/

The Application Panel 1

Figure 1-9 shows the Application panel of JBindery. You use this panel to
specify some application parameters if you want to package your Java
application to run under the Mac OS.

Figure 1-9 The Application panel

■ The Creator field lets you specify a creator for your Java application. This
unique string identiÞes the application and any documents that the
application may create. If you plan to publically distribute your application,
you must register its creator name with Apple through Developer Technical
Support to avoid collisions between names used by different developers.
You can register a creator online or view currently registered creators at the
following Web site:
20 JBindery Features

 Apple Computer, Inc. 6/19/98

Using JBindery
http://developer.apple.com/dev/cftype/
For more information about creators, see Inside Macintosh: Macintosh Toolbox
Essentials.

■ The Minimum and Maximum App Heap Þelds let you specify the amount of
memory to use when executing this Java program. Mac OS Runtime for Java
uses temporary memory for most allocations (the Java virtual machine and
so on) so an application heap of 512K is usually sufÞcient.

■ The Merge Resources From checkbox speciÞes any Mac OS resources you
want to add to the packaged Java application. You can drag a compiled
resource Þle onto the box or choose a Þle by clicking within the box and
bringing up a selection dialog box. Resources can contain a custom icon,
help text, or other information, but they are optional and do not need to be
included with your Java application. For more information, see ÒMac OS
ResourcesÓ (page 26).

Examples 1

This section contains step-by-step instructions for packaging or executing your
Java application using JBindery.

Packaging a Java Application 1

Packaging a Java application to run under the Mac OS creates a Þle that
contains the following items:

■ the Java classes that make up the application

■ predeÞned settings or parameters for the Java application (class paths,
arguments, and so on)

■ any Þles the Java application requires (images, data, and so on)

■ a wrapper Mac OS application to set up the Java virtual machine and call the
applicationÕs main method

■ any Mac OS resources used by the wrapper application

The packaged Java application does not contain the Java virtual machine. The
host computer that executes the Java application must supply the virtual
machine through the MRJ libraries.
Examples 21
 Apple Computer, Inc. 6/19/98

Using JBindery
For example, if you wanted to package the HelloWorld sample application
using JBindery, you can do the following:

1. Drag the class Þle HelloWorld.class onto the JBindery icon. JBindery
launches, and HelloWorld is listed as the class name in the Command panel.

2. Choose Save Settings... from any of the panels. When the save dialog box
appears, name the Þle HelloWorld App and save it. Make sure the Save as
Application checkbox is checked.

The resulting Þle HelloWorld App is the packaged Java application. You can
double-click on the icon to launch it.

To create a more sophisticated packaged application using a virtual Þle system,
you should observe the following steps:

1. Put all the Þles your Java application requires into a single folder hierarchy.
This folder should not contain any Mac OS resource Þles.

2. Drag the class Þle, .zip package, or .jar package containing the applicationÕs
main method onto the JBindery icon. Alternatively, you can launch JBindery
and then enter the class name manually in the Command panel.

3. In the Command panel, enter any parameters your application requires and
choose paths for console output and input.

4. In the Properties panel, enter any property/value pairs you want to include
with your application.

5. In the Appearance panel, select any desired appearance features.

6. In the Security panel, specify any proxy servers, if desired, and choose
whether you want to use the code veriÞer.

7. In the Application panel, choose a signature (also called a creator) for your
application. If you plan to distribute your application (whether
commercially or as shareware), you should register the creator with Apple.
The default creator is '????'. See ÒThe Application PanelÓ (page 20) for more
information.

8. If desired, you can change the default application heap sizes in the
Application panel.

9. If you have any Mac OS resources you want to include, drag the compiled
resource Þle onto the Merge Resources From box in the Application panel (or
click on the box to select the resource Þle manually). See ÒMac OS
ResourcesÓ (page 26) for more information about resources.
22 Examples

 Apple Computer, Inc. 6/19/98

Using JBindery
10. If the folder containing your Java applicationÕs class Þles (that is, the
top-level folder of your folder hierarchy) does not already appear in the
Classpath panel, drag the folder onto the class path list (or click on the Add
Folder button to choose the folder using a dialog box).

11. In the class path list, select the folder containing your applicationÕs class Þles
and click on the Make VFS button. Doing so designates your folder as the
virtual Þle system. Delete all other entries in the class path list.

12. If you did not choose to expand the .zip or .jar Þles in your folder hierarchy,
you must add paths to each such Þle by selecting the Add Manually button
in the Classpath panel. For example, if you had the Þle cookie.jar in the top
level of the folder hierarchy, you must add the path file:///$VFS/cookie.jar.

13. If the folder containing your Java applicationÕs class Þles contains any .jar
Þles (expanded or not) and you are running JBindery under MRJ 2.0, you
must add class paths to the .jar Þles using the Add Manually button (as in
step 12.).

14. Choose Save Settings... from any of the panels. When the save dialog box
appears, choose a name for your packaged Java application Þle.

15. Select the Save as Application checkbox in the save dialog box and save your
packaged Þle.

During the save process, JBindery displays some progress information as it
packages the Þles you speciÞed in the Virtual File System panel. The saved Þle
can now be launched like a Mac OS application. Alternatively, if you select the
Run button while still in JBindery, JBindery automatically quits and launches
your packaged application.

If desired, you can keep the Java application class Þles separate from the
application Þle by not selecting a virtual Þle system. The resulting application
Þle then contains only the following items:

■ predeÞned settings or parameters for the Java application (class paths,
arguments, and so on)

■ a wrapper Mac OS application to set up the Java virtual machine and call the
applicationÕs main method

■ any Mac OS resources used by the wrapper application

To build a packaged application with separate class Þles, you should do the
following:
Examples 23
 Apple Computer, Inc. 6/19/98

Using JBindery
1. Follow steps 2 through 8 as for creating an application with packaged class
Þles.

2. In the Classpath panel, enter any additional paths you want searched when
looking for the Java applicationÕs class Þles. Note that paths stored as aliases
may not be resolvable if the application is moved to a different computer.

3. Choose Save Settings... from any of the panels. When the save dialog box
appears, choose a name for your application Þle.

4. Select the Save as Application checkbox in the save dialog box and save your
packaged Þle.

The resulting application Þle can be launched like a Mac OS application
assuming that the required Java classes can be found.

Executing a Java Application 1

You can also use JBindery to simply execute a Java application rather than
package it. In such cases, JBindery acts as the wrapper application that sets up
the Java virtual machine and calls the main method.

For example, to simply run the sample HelloWorld application, you can do the
following:

1. Drag the class Þle HelloWorld.class onto the JBindery icon. JBindery
launches, and HelloWorld is listed as the class name in the Command panel.

2. Select the Run button (or simply hit the Return key).

JBindery then executes the HelloWorld application.

To execute a more sophisticated Java application, you should observe the
following steps:

1. Drag the class Þle or .zip package containing the applicationÕs main method
onto the JBindery icon. Alternatively, you can launch JBindery and then
enter the class name manually in the Command panel.

2. In the Command panel, enter any parameters your application requires and
choose paths for console output and input.

3. In the Classpath panel, enter the search paths to include when looking for
Java classes.

4. In the Properties panel, enter any property/value pairs you want to include
with your application.
24 Examples

 Apple Computer, Inc. 6/19/98

Using JBindery
5. In the Appearance panel, select any desired appearance features.

6. In the Security panel, specify any proxy servers, if desired, and choose
whether you want to use the code veriÞer.

7. In any of the panels, select the Run button (or press the Return key) to
execute the Java application.

JBindery quits automatically when you exit the Java application. In cases where
you might want to run the Java application repeatedly (for example, for tests
during development) you can save a JBindery settings Þle. To do so, simply
select Save Settings... from any of the panels after following steps 1 through 6.
When the save dialog box appears, choose a name for the settings Þle, but do
not select the Save as Application checkbox.

IMPORTANT

If you move your settings Þle to another computer, the
Finder may not be able to resolve any class paths stored as
aliases. ▲

The saved settings are stored as a JBindery document. Double-clicking on the
document icon automatically launches JBindery, which then reads in the
settings. To run the Java application with stored settings, you must then select
the Run button in any panel.

You can also store frequently used settings by saving them as defaults using the
File menu. The default settings (which are stored as a JBindery document in the
Preferences folder) are then loaded whenever you launch JBindery directly
(that is, when double-clicking or opening the JBindery application itself).

IMPORTANT

The Finder considers JBindery to be the executing
application when you use it to simply execute Java
applications. For example, if you speciÞed a class path
using the variable /$APPLICATION/, the path is relative to
the location of JBindery, not the location of the Java
applicationÕs classes. ▲
Examples 25
 Apple Computer, Inc. 6/19/98

Using JBindery
Mac OS Resources 1

Under the Mac OS, a Þle can contain information in the data fork, the resource
fork, or both. Traditionally the data fork holds large pieces of contiguous
information (as contained in a text document or a ßattened QuickTime movie),
while the resource fork contains items commonly accessed by Mac OS
applications (such as icons or dialog boxes). See Inside Macintosh: Overview for a
general discussion of Mac OS resources.

You do not need to use resources when building a standalone Java application
for the Mac OS. However, if you want to add Mac OS features, you may need
to create or modify resources.

You can use the ResEdit resource editor to create or modify resources. You can
download ResEdit from the following FTP site:

ftp://ftp.info.apple.com/Apple_Support_Area/Apple.Software.Updates/US/
Macintosh/Utilities/

Documentation for ResEdit is available at the following web site:

http://developer.apple.com/techpubs/mac/tools_languages.html

The following sections describe the features you can add to your application
using Mac OS resources.

Splash Screens 1

You can add a splash screen to your packaged application by saving a graphic
as a 'PICT' resource with ID -16000. The image is then displayed when your
application launches.

Custom Icons 1

When you build your standalone Java application, JBindery automatically
assigns the default application icon (shown in Figure 1-10) to the packaged Þle.
26 Mac OS Resources

 Apple Computer, Inc. 6/19/98

Using JBindery
Figure 1-10 The default application icon

If you prefer a customized icon you must modify or replace the icon resource
using ResEdit. See the book ResEdit Reference for information about editing
icons and adding icon sets with the 'BNDL' resource.

Note
If the resources you add include a 'BNDL' resource, the
packaged applicationÕs bundle bit is automatically set. ◆

IMPORTANT

Apple has strict guidelines for the look of any icons used
under the Mac OS. You should consult the book Macintosh
Human Interface Guidelines (available at the apple.com/
developer/ web site) before creating your own custom
icons. ▲
Mac OS Resources 27
 Apple Computer, Inc. 6/19/98

T H E A P P L E P U B L I S H I N G S Y S T E M

 Apple Computer, Inc. 6/19/98

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Line art was created using
Adobeª Illustrator and Adobe Photoshop.

Text type is Palatino¨ and display type is
Helvetica¨. Bullets are ITC Zapf
Dingbats¨. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Jun Suzuki

ILLUSTRATOR
Ruth Anderson and Dave Arrigoni

DEVELOPMENTAL EDITOR
Donna S. Lee

PRODUCTION EDITOR
Glen Frank

Special thanks to Karen Wenzel for this
revision.

Acknowledgments to Peri Frantz, Rachel
Rischpater, and the rest of the MRJ team.

	Using JBindery
	Contents
	Using JBindery
	How to Use This Document
	Changes from Version 2.0
	System Requirements
	How JBindery Works
	JBindery Features
	The Command Panel
	The Classpath Panel
	Adding an Alias
	Adding a Class Path Manually
	Adding a Virtual File System

	The Properties Panel
	The Appearance Panel
	The Security Panel
	The Application Panel

	Examples
	Packaging a Java Application
	Executing a Java Application

	Mac OS Resources
	Splash Screens
	Custom Icons

